If the zeroes of the quadratic polynomial are $\alpha$ and $\beta$ then the quadratic polynomial can be found as $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
$\ldots \ldots(1)$
Substituting the values in (1), we get
$x^{2}-6 x+4$
If the zeroes of the quadratic polynomial are $\alpha$ and $\beta$ then the quadratic polynomial can be found as $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
$\ldots \ldots(1)$
Substituting the values in (1), we get
$x^{2}-6 x+4$