Given,
$\mathop {\lim }\limits_{x \to – 2} \frac{{\frac{1}{x} + \frac{1}{2}}}{{x + 2}}$
Substituting $x = – 2$ to get,
$\mathop {\lim }\limits_{x \to – 2} \frac{{\frac{1}{x} + \frac{1}{2}}}{{x + 2}} = \frac{0}{0}$
As, this limit is undefined so the other approach would be,
$\mathop {\lim }\limits_{x \to – 2} \frac{{\frac{1}{x} + \frac{1}{2}}}{{x + 2}} = \frac{{\frac{{2 + x}}{{2x}}}}{{x + 2}}$
$\mathop {\lim }\limits_{x \to – 2} \frac{{\frac{1}{x} + \frac{1}{2}}}{{x + 2}} = \frac{1}{{2x}}$
Now, substituting $x = – 2$ to get,
$\mathop {\lim }\limits_{x \to – 2} \frac{{\frac{1}{x} + \frac{1}{2}}}{{x + 2}} = \frac{1}{{2( – 2)}}$
$\mathop {\lim }\limits_{x \to – 2} \frac{{\frac{1}{x} + \frac{1}{2}}}{{x + 2}} = – \frac{1}{4}$.