Determine the current in each branch of the network shown in the figure:
Determine the current in each branch of the network shown in the figure:

Answer :

The current flowing through the network’s numerous branches is depicted in the diagram below:

Let I 1 denote the current flowing through the outer circuit

Let I 2 denote the current flowing through AB branch

Let I 3 denote the current flowing through AD branch

Let I 2 – I 4 denote the current flowing through branch BC

Let I 3 + I 4 denote the current flowing through branch DC

Consider the closed-circuit ABDA, we know that potential is zero, therefore –

10 I 2 + 5 I 4 – 5 I 3 = 0

Or, 2 I 2 +  I 4 –  I 3 = 0

3 = 2 I 2 +  I 4                                                                                  . . . . . . . . eq ( 1 )

Consider the closed circuit BCDB, since we know that potential is zero, we have-

5 ( I 2 – I 4 ) – 10 ( I 3 + I 4 ) – 5 I 4 = 0

Or, 5 I 2 – 5 I 4 – 10 I 3 – 10 I 4 –  5 I 4 = 5 I 2 – 10 I 3 –  20 I 4 = 0

2 = 2 I 3 – 4 I 4                                                                             . . . . . . .eq ( 2 )

Consider the closed-circuit ABCFEA, since we know that potential is zero –

– 10 + 10 ( I 1 ) + 10 ( I 2 ) + 5 ( I 2 –  I 4 ) = 0

Or, 10 = 15 I 2 + 10 I 1 – 5 I 4

Therefore, we have –

3 I 2 + 2 I 2 – I 4 = 2                                                                       . . . . . . . .  eq ( 3 )

Using equation ( 1 )  and ( 2 ), we get:

3 = 2 ( 2 I 3 + 4 I 4 ) + I 4 =  4 I 3 + 8 I 4 + I 4

– 3 I 3 = 9 I 4

Or,   – 3 I 4 = + I 3                                                                          . . . . . . . . eq ( 4 )

Substituting equation  ( 4 ) in equation ( 1 ) , we get:

3 = 2 I 2 + I 4

Or,  – 4 I 4 = 2 I 2

2 = – 2 I 4                                                                                 . . . . . . . . .eq ( 5 )

Using the above equation , we conclude that :

I 1 = I 3 + I 2                                                                                   . . . . . . . .  .eq ( 6 )

Substituting equation ( 4 ) in equation ( 1 ) , we get –

3 I 2 + 2 ( I 3 + I 2 ) – I 4 = 2

Or, 5 I + 2 I 3 – I 4 = 2                                                                . . . . . . . . eq ( 7 )

Substituting equations ( 4 ) and ( 5 ) in equation ( 7 ) , we obtain

5 ( – 2 I 4 ) + 2 ( – 3 I 4 ) – I 4 = 2

Or, – 10 I 4 –  6 I 4 – I 4 = 2

17 I 4 = – 2

Therefore, we obtain –

\[{{I}_{4}}=\frac{-2}{17}A\]

Further, equation ( 4 ) reduces to

3 = – 3 ( I 4 )

Therefore, we obtain –

\[{{I}_{3}}=-3\left( \frac{-2}{17} \right)A=\frac{6}{17}A\]

Similarly, we have ——— I 2 = – 2 ( I 4 )

\[{{I}_{3}}=-2\left( \frac{-2}{17} \right)A=\frac{4}{17}A\]

Again, from the above equation we have –

\[{{I}_{2}}-{{I}_{4}}=\frac{4-(-2)}{17}=\frac{6}{17}A\]

Similary,

\[{{I}_{3}}+{{I}_{4}}=\frac{6-(-2)}{17}=\frac{4}{17}A\]

Also,

\[{{I}_{1}}={{I}_{3}}+{{I}_{2}}=\frac{6+4}{17}=\frac{10}{17}A\]

Therefore, current in each branch is given as :

In branch AB = 4/17 A

In branch BC = 6/17 A

In branch CD = -4/17 A

In branch AD = 6/17 A

In branch BD = -2/17 A

The sum of all these currents give us the total current, which is 10/17 A.