We have,
\[A\text{ }=\text{ }{{[{{a}_{ij}}]}_{2\times 2}}\]
(I) Such that,\[~{{a}_{ij}}~=\text{ }{{\left( i\text{ }\text{ }2j \right)}^{2}}/\text{ }2;\] \[where\text{ }1\text{ }\le \text{ }i\text{ }\le \text{ }2;\text{ }1\text{ }\le \text{ }j\text{ }\le \text{ }2\]
Along these lines, the details of the matrix are
(ii) Here, \[{{a}_{ij}}~=\text{ }\left| -2i\text{ }+\text{ }3j \right|\]
In this way, the provisions of the matrix are