Functions

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ and $g(\mathrm{x})=(\mathrm{x}+1)$. Show that $\mathrm{g}$ o $\mathrm{f} \neq \mathrm{f} \circ \mathrm{g}$.

Solution: We need to prove: $g$ o $f \neq f$ o $g$ Formula used: (i) f o $\mathrm{g}=\mathrm{f}(\mathrm{g}(\mathrm{x}))$ (ii) $g$ of $=g(f(x))$ Given that: (i) $f: R \rightarrow R: f(x)=x^{2}$ (ii)...

read more

Show that the function $f: R \rightarrow R: f(x)=\left\{\begin{array}{l}1, \text { if } x \text { is rational } \\ -1, \text { if } x \text { is irrational }\end{array}\right.$ is many – one into.
Find (i) $f\left(\frac{1}{2}\right)$
(ii) $\mathrm{f}(\sqrt{2})$

Solution: (i) $f\left(\frac{1}{2}\right)$ Here, $x=1 / 2$, which is rational $\therefore f(1 / 2)=1$ (ii) $\mathrm{f}(\sqrt{2})$ Here, $x=\sqrt{2}$, which is irrational $\therefore...

read more

Show that the function f: $N \rightarrow Z$, defined by $f(n)=\left\{\begin{array}{l} \frac{1}{2}(n-1), \text { when } n \text { is odd } \\ -\frac{1}{2} n, \text { when } n \text { is even } \end{array}\right.$ is both one – one and onto.

Solution: $\begin{array}{l} f(n)=\left\{\begin{array}{l} \frac{1}{2}(n-1), \text { when } n \text { is odd } \\ -\frac{1}{2} n, \text { when } n \text { is even } \end{array}\right. \\ f(1)=0 \\...

read more