Given \[f\text{ }\left( x \right)\text{ }=\text{ }sin\text{ }2x\] Differentiate w.r.t x, we get \[f'\left( x \right)\text{ }=\text{ }2\text{ }cos\text{ }2x,\text{ }0\text{ }<\text{ }x\text{...
Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: f (x) = x^3 – 6x^2 + 9x +15
Given, $f(x)=x^{3}-6 x^{2}+9 x+15$ Differentiate with respect to $x$, we get, $f^{\prime}(x)=3 x^{2}-12 x+9=3\left(x^{2}-4 x+3\right)$ $=3(x-3)(x-1)$ For all maxima and minima, $ \begin{array}{l}...
Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: f(x)=1/(x^2+2)
As per the given question, Therefore \[x\text{ }=\text{ }0,\] now for the values close to \[x\text{ }=\text{ }0,\] and to the left of \[0,\text{ }f'\left( x \right)\text{ }>\text{ }0\] Also for...
Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: f (x) = (x – 1) (x + 2)2
Differentiate with respect to $x$, we get, $ \begin{array}{l} f(x)=(x+2)^{2}+2(x-1)(x+2) \\ =(x+2)(x+2+2 x-2) \\ =(x+2)(3 x) \end{array} $ For all maxima and minima, $ \begin{array}{l} f(x)=0 \\...
Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: f (x) = x^3 (x – 1)^2
Given, $f(x)=x^{2}(x-1)^{2}$ Differentiate with respect to $x$, we get, $ \begin{array}{l} {\left x=3 x^{2}(x-1)^{2}+2 x^{2}(x-1)\right.} \\ =[x-1]\left(3 x^{2}(x-1)+2 x^{2}\right) \\ =[x-1]\left(3...
Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: f (x) = x^3 – 3x
Given, $f(x)=x^{2}-3 x$ Differentiate with respect to $x$ then we get, $ f(x)=3 x^{2}-3 $ $\mathrm{Now}, \mathrm{f}(x)=0$ $ 3 x^{2}=3 \Rightarrow x=\pm 1 $ Again differentiate $f(x)=3 x^{2}-3$ $...
Find the points of local maxima or local minima, if any, of the following functions, using the first derivative test. Also, find the local maximum or local minimum values, as the case may be: f (x) = (x – 5)^4
Given $f(x)=(x-5)^{4}$ Differentiate with respect to $x$ $ f(x)=4(x-5)^{2} $ For local maxima and minima $ \begin{array}{l} f(x)=0 \\ =4(x-5)^{2}=0 \\ =x-5=0 \\ x=5 \end{array} $ $f(x)$ changes from...