Given $f(x)=|\sin 4 x+3|$ on $R$ We know that $-1 \leq \sin 4 x \leq 1$ $ \begin{array}{l} \Rightarrow 2 \leq \sin 4 x+3 \leq 4 \\ \Rightarrow 2 \leq|\sin 4 x+3| \leq 4 \end{array} $ Hence, the...
Find the maximum and the minimum values, if any, without using derivatives of the following functions: f (x) = sin 2x + 5 on R
Given $f(x)=\sin 2 x+5$ on $R$ We know that $-1 \leq \sin 2 x \leq 1$ $ \begin{array}{l} \Rightarrow-1+5 \leq \sin 2 x+5 \leq 1+5 \\ \Rightarrow 4 \leq \sin 2 x+5 \leq 6 \end{array} $ Hence, the...
Find the maximum and the minimum values, if any, without using derivaties of the following functions: f (x) = |x + 2| on R
Given $f(x)=|x+2|$ on $R$ $\Rightarrow f(x) \geq 0$ for all $x \in R$ So, the minimum value of $f(x)$ is 0, which attains at $x=-2$ Hence, $f(x)=|x+2|$ does not have the maximum value.
Find the maximum and the minimum values, if any, without using derivatives of the following functions: f (x) = –(x – 1)^2 + 2 on R
Given $f(x)=-(x-1)^{2}+2$ It can be observed that $(x-1)^{2} \geq 0$ for every $x \in R$ Therefore, $f(x)=-(x-1)^{2}+2 \leq 2$ for every $x \in R$ The maximum value of $f$ is attained when $(x-1)=0$...
Find the maximum and the minimum values, if any, without using derivatives of the following functions: f (x) = 4x^2 – 4x + 4 on R
Given $f(x)=4 x^{2}-4 x+4$ on $R$ $=4 x^{2}-4 x+1+3$ By grouping the above equation we get, $ =(2 x-1)^{2}+3 $ Since, $(2 x-1)^{2} \geq 0$ $ \begin{array}{l} =(2 x-1)^{2}+3 \geq 3 \\ =f(x) \geq f(1...
Using binomial theorem, prove that 23n – 7n – 1 is divisible by 49, where n ∈ N.
Answer: Given, 23n – 7n – 1 23n – 7n – 1 = 8n – 7n – 1 Using binomial theorem, 8n = 7n + 1 8n = (1 + 7) n 8n = nC0 + nC1 (7)1 + nC2 (7)2 + nC3 (7)3 + nC4 (7)2 + nC5 (7)1 + … + nCn (7) n 8n = 1 + 7n...