As per the question it is given $\left| \begin{matrix} a+x & y & z \\ x & a+y & z \\ x & y & a+z \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} a+x...
Evaluate the following $\left| \begin{matrix} 0 & x{{y}^{2}} & x{{z}^{2}} \\ {{x}^{2}}y & 0 & y{{z}^{2}} \\ x{{z}^{2}} & z{{y}^{2}} & 0 \\ \end{matrix} \right|$
As per the question $\left| \begin{matrix} 0 & x{{y}^{2}} & x{{z}^{2}} \\ {{x}^{2}}y & 0 & y{{z}^{2}} \\ x{{z}^{2}} & z{{y}^{2}} & 0 \\ \end{matrix} \right|$ Let...
Evaluate the folowing $\left| \begin{matrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \\ \end{matrix} \right|$
As per the question, $\left| \begin{matrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} x & 1 & 1 \\ 1...
Evaluate the following $\left| \begin{matrix} a & b & c \\ c & a & b \\ a & c & a \\ \end{matrix} \right|$
As per the question, $\left| \begin{matrix} a & b & c \\ c & a & b \\ a & c & a \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} a & b & c \\ c...
Evaluate the following $\left| \begin{matrix} x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda \\ \end{matrix} \right|$
As per the question $\left| \begin{matrix} x+\lambda & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix}...
Evaluate the following $\left| \begin{matrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \\ \end{matrix} \right|$
It is given in the question $\left| \begin{matrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 1 & a &...
Evaluate the following $\left| \begin{matrix} a & b+c & {{a}^{2}} \\ b & c+a & {{b}^{2}} \\ c & a+b & {{c}^{2}} \\ \end{matrix} \right|$
As per the question it states $\left| \begin{matrix} a & b+c & {{a}^{2}} \\ b & c+a & {{b}^{2}} \\ c & a+b & {{c}^{2}} \\ \end{matrix} \right|$ Let $\vartriangle =\left|...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} {{\sin }^{2}}A & \cot A & 1 \\ {{\sin }^{2}}B & \cot B & 1 \\ {{\sin }^{2}}C & \cot C & 1 \\ \end{matrix} \right|$ where A,B,C are the angles of $\vartriangle ABC$
$\left| \begin{matrix} {{\sin }^{2}}A & \cot A & 1 \\ {{\sin }^{2}}B & \cot B & 1 \\ {{\sin }^{2}}C & \cot C & 1 \\ \end{matrix} \right|$ Let $\vartriangle =\left|...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} \sqrt{23}+\sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5 \\ \end{matrix} \right|$
$\left| \begin{matrix} \sqrt{23}+\sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{15}+\sqrt{46} & 5 & \sqrt{10} \\ 3+\sqrt{115} & \sqrt{15} & 5 \\ \end{matrix} \right|$ Let...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} \cos (x+y) & -\sin (x+y) & \cos 2y \\ \sin x & \cos x & \sin y \\ -\cos x & \sin x & -\cos y \\ \end{matrix} \right|$
$\left| \begin{matrix} \cos (x+y) & -\sin (x+y) & \cos 2y \\ \sin x & \cos x & \sin y \\ -\cos x & \sin x & -\cos y \\ \end{matrix} \right|$ Let $\vartriangle =\left|...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} {{\sin }^{2}}{{23}^{\circ }} & {{\sin }^{2}}{{67}^{\circ }} & \cos {{180}^{\circ }} \\ -{{\sin }^{2}}{{67}^{\circ }} & -{{\sin }^{2}}{{23}^{\circ }} & {{\cos }^{2}}{{180}^{\circ }} \\ \cos {{180}^{\circ }} & {{\sin }^{2}}{{23}^{\circ }} & {{\sin }^{2}}{{67}^{\circ }} \\ \end{matrix} \right|$
$\left| \begin{matrix} {{\sin }^{2}}{{23}^{\circ }} & {{\sin }^{2}}{{67}^{\circ }} & \cos {{180}^{\circ }} \\ -{{\sin }^{2}}{{67}^{\circ }} & -{{\sin }^{2}}{{23}^{\circ }} & {{\cos...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} \sin \alpha & \cos \alpha & \cos \left( \alpha +\delta \right) \\ \sin \beta & \cos \beta & \cos \left( \beta +\delta \right) \\ \sin \gamma & \cos \gamma & \cos \left( \gamma +\delta \right) \\ \end{matrix} \right|$
$\left| \begin{matrix} \sin \alpha & \cos \alpha & \cos \left( \alpha +\delta \right) \\ \sin \beta & \cos \beta & \cos \left( \beta +\delta \right) \\ \sin \gamma &...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} {{\left( {{2}^{x}}+{{2}^{-x}} \right)}^{2}} & {{\left( {{2}^{x}}-{{2}^{-x}} \right)}^{2}} & 1 \\ {{\left( {{3}^{x}}+{{3}^{-x}} \right)}^{2}} & {{\left( {{3}^{x}}-{{3}^{-x}} \right)}^{2}} & 1 \\ {{\left( {{4}^{x}}+{{4}^{-x}} \right)}^{2}} & {{\left( {{4}^{x}}-{{4}^{-x}} \right)}^{2}} & 1 \\ \end{matrix} \right|$
$\left| \begin{matrix} {{\left( {{2}^{x}}+{{2}^{-x}} \right)}^{2}} & {{\left( {{2}^{x}}-{{2}^{-x}} \right)}^{2}} & 1 \\ {{\left( {{3}^{x}}+{{3}^{-x}} \right)}^{2}} & {{\left(...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \\ \end{matrix} \right|$
$\left| \begin{matrix} a & b & c \\ a+2x & b+2y & c+2z \\ x & y & z \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} a & b & c \\ a+2x & b+2y...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} {{1}^{2}} & {{2}^{2}} & {{3}^{2}} & {{4}^{2}} \\ {{2}^{2}} & {{3}^{2}} & {{4}^{2}} & {{5}^{2}} \\ {{3}^{2}} & {{4}^{2}} & {{5}^{2}} & {{6}^{2}} \\ {{4}^{2}} & {{5}^{2}} & {{6}^{2}} & {{7}^{2}} \\ \end{matrix} \right|$
$\left| \begin{matrix} {{1}^{2}} & {{2}^{2}} & {{3}^{2}} & {{4}^{2}} \\ {{2}^{2}} & {{3}^{2}} & {{4}^{2}} & {{5}^{2}} \\ {{3}^{2}} & {{4}^{2}} & {{5}^{2}} &...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} 1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2 \\ \end{matrix} \right|$
$\left| \begin{matrix} 1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 1 & 43 & 6 \\ 7 & 35 & 4 ...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \\ \end{matrix} \right|$
$\left| \begin{matrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 0 & x & y \\ -x & 0 & z ...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} 49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3 \\ \end{matrix} \right|$
$\left| \begin{matrix} 49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 49 & 1 & 6 \\ 39 & 7 & 4 ...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} 1 & a & {{a}^{2}}-bc \\ 1 & b & {{b}^{2}}-ac \\ 1 & c & {{c}^{2}}-ab \\ \end{matrix} \right|$
$\left| \begin{matrix} 1 & a & {{a}^{2}}-bc \\ 1 & b & {{b}^{2}}-ac \\ 1 & c & {{c}^{2}}-ab \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 1 & a...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} a+b & 2a+b & 3a+b \\ 2a+b & 3a+b & 4a+b \\ 4a+b & 5a+b & 6a+b \\ \end{matrix} \right|$
$\left| \begin{matrix} a+b & 2a+b & 3a+b \\ 2a+b & 3a+b & 4a+b \\ 4a+b & 5a+b & 6a+b \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} a+b & 2a+b &...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} \frac{1}{a} & {{a}^{2}} & bc \\ \frac{1}{b} & {{b}^{2}} & ac \\ \frac{1}{c} & {{c}^{2}} & ab \\ \end{matrix} \right|$
$\left| \begin{matrix} \frac{1}{a} & {{a}^{2}} & bc \\ \frac{1}{b} & {{b}^{2}} & ac \\ \frac{1}{c} & {{c}^{2}} & ab \\ \end{matrix} \right|$ Let $\vartriangle =\left|...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} 2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12 \\ \end{matrix} \right|$
$\left| \begin{matrix} 2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 2 & 3 & 7 \\ 13...
Without expanding, show that the value of each of the following determinants is zero:$\left| \begin{matrix} 6 & 3 & -2 \\ 2 & -1 & 2 \\ -10 & 5 & 2 \\ \end{matrix} \right|$
$\left| \begin{matrix} 6 & 3 & -2 \\ 2 & -1 & 2 \\ -10 & 5 & 2 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 6 & 3 & -2 \\ 2 & -1 & 2 ...
2. Without expanding, show that the value of each of the following determinants is zero: (i) $\left| \begin{matrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \\ \end{matrix} \right|$
As per the given information it states, $\left| \begin{matrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 8...
1. Evaluate the following determinant: \[\left| \begin{matrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \\ \end{matrix} \right|\]
as per the question given it states $\left| \begin{matrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 102...
1. Evaluate the following determinant:(vii) \[\left| \begin{matrix} 1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9 \\ \end{matrix} \right|\]
It is given in the question that, $\left| \begin{matrix} 1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9 \\ \end{matrix}...
1. Evaluate the following determinant:(vi) \[\left| \begin{matrix} 6 & 3 & -2 \\ 2 & -1 & 2 \\ -10 & 5 & 2 \\ \end{matrix} \right|\]
As per the question it is given that, $\vartriangle =\left| \begin{matrix} 6 & -3 & 2 \\ 2 & -1 & 2 \\ -10 & 5 & 2 \\ \end{matrix} \right|$ Applying row operation...
1. Evaluate the following determinant:(v) \[\left| \begin{matrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \\ \end{matrix} \right|\]
As per the question it states, $\vartriangle =\left| \begin{matrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \\ \end{matrix} \right|$ By applying column operation...
1. Evaluate the following determinant:(iv) \[\left| \begin{matrix} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \\ \end{matrix} \right|\]
As per the question it is given that, $\left| \begin{matrix} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} 1...
1. Evaluate the following determinant:(iii) \[\left| \begin{matrix} a & h & g \\ h & b & f \\ g & f & c \\ \end{matrix} \right|\]
According to the question it states $\left| \begin{matrix} a & h & g \\ h & b & f \\ g & f & c \\ \end{matrix} \right|$ Let $\vartriangle =\left| \begin{matrix} a & h...
1. Evaluate the following determinant: (ii) \[\left| \begin{matrix} 67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26 \\ \end{matrix} \right|\]
As per the question it is given that, \[\left| \begin{matrix} 67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26 \\ \end{matrix} \right|\] Let $\vartriangle =\left|...
1. Evaluate the following determinant:(i) \[\left| \begin{matrix} 1 & 5 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38 \\ \end{matrix} \right|\]
it is given in the question that, \[\left| \begin{matrix} 1 & 5 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38 \\ \end{matrix} \right|\] Let $\vartriangle =\left| \begin{matrix} 1...