Solution: $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{Z}$ and $(\mathrm{a}-\mathrm{b})$ is divisible by 5$\}$ (As given) If $R$ is Reflexive, Symmetric and Transitive,...
Let $R=\{(a, b): a, b \in Z$ and $(a-b)$ is divisible by 5$\}$ Show that $\mathrm{R}$ is an equivalence relation on $\mathrm{Z}$.
read more