Motion in a straight line

A man runs across the roof-top of a tall building and jumps horizontally with the hope of landing on the roof of the next building which is of a lower height than the first. If his speed is 9 m/s, the distance between the two buildings is 10 m and the height difference is 9 m, will he be able to land on the next building?

For a free fall at 9m, the horizontal distance covered by the man should be at least 10 m. u = 0 a = 10 m/s2 s = 9 m t = t s = ut + 1/2 at2 Substituting the values, we get t = √9/3 = 3/√5 sec The...

read more

It is a common observation that rain clouds can be at about a kilometre altitude above the ground. a) If a rain drop falls from such a height freely under gravity, what will be its speed? Also, calculate in km/h b) A typical rain drop is about 4 mm diameter. Momentum is mass x speed in magnitude. Estimate its momentum when it hits ground. c) Estimate the time required to flatten the drop. d) Rate of change of momentum is force. Estimate how much force such a drop would exert on you. e) Estimate the order of magnitude force on umbrella. Typical lateral separation between two rain drops is 5 cm.

a) Velocity attained by the rain drop which is falling freely through the height h is: v2 = u2 – 2g(-h) As u = 0 v = √2gh = 100√2 m/s = 510 km/h b) Diameter of the drop, d = 2r = 4 mm Radius of the...

read more

A motor car moving at a speed of 72 km/h cannot come to a stop in less than 3 s while for a truck this time interval is 5 s. On a highway the car is behind the truck both moving at 72 km/h. The truck gives a signal that it is going to stop at emergency. At what distance the car should be from the truck so that it does not bump onto the truck. Human response time is 0.5 s.

For truck, u = 20 m/s v = 0 a = ? t = 5s v = u + at a = 4 m/s2 For car, t = 3 s u = 20 m/s v = 0 a = ac v = u + at ac = -20/3 m/s2 Let s be the distance between the car and the truck when the truck...

read more

A man is standing on top of a building 100 m high. He throws two balls vertically, one at t = 0 and other after a time interval. The later ball is thrown at a velocity of half the first. The vertical gap between first and second ball is +15m at t = 2s. The gap is found to remain constant. Calculate the velocity with which the balls were thrown and the exact time interval between their throw.

Let the speed of ball 1 = u1 = 2u m/s Then the speed of ball 2 = u2 = u m/s The height covered by ball 1 before coming to rest = h1 The height covered by ball 2 before coming to rest = h2 We know...

read more

A bird is tossing between two cars moving towards each other on a straight road. One car has a speed of 18 m/h while the other has the speed of 27 km/h. The bird starts moving from first car towards the other and is moving with the speed of 36 km/h and when the two cars were separated by 36 km. What is the total distance covered by the bird? What is the total displacement of the bird?

The relative speed of the cars = 27 + 18 = 45 km/h When the two cars meet together, time t is given as t = distance between cars/relative speed of cars = 36/(27+18) t = 4/5 h Therefore, distance...

read more

A particle executes the motion described by x(t) = x0 (1 – e-γt) where t ≥ 0, x0 > 0 a) Where does the particles start and with what velocity? b) Find maximum and minimum values of x(t), v(t), a(t). Show that x(t) and a(t) increase with time and v(t) decreases with time.

a) x(t) = x0 (1 – e-γt) v(t) = dx(t)/dt = +x0 γ e-γt a(t) = dv/dt = x0 γ2 e-γt v(0) = x0 γ b) x(t) is minimum at t = 0 since t = 0 and [x(t)]min = 0 x(t) is maximum at t = ∞ since t = ∞ and...

read more

An object falling through a fluid is observed to have acceleration given by a = g – bv where g = gravitational acceleration and b is constant. After a long time of release, it is observed to fall with constant speed. What must be the value of constant speed?

The concept used in this question will be based on the behaviour of a spherical object when it is dropped through a viscous fluid. When a spherical body of radius r is dropped, it is first...

read more

Give examples of a one-dimensional motion where a) the particle moving along positive x-direction comes to rest periodically and moves forward b) the particle moving along positive x-direction comes to rest periodically and moves backwardπ

When an equation has sine and cosine functions, the nature is periodic. a) When the particle is moving in positive x-direction, it is given as t > sin t When the displacement is as a function of...

read more

A ball is bouncing elastically with a speed 1 m/s between walls of a railway compartment of size 10 m in a direction perpendicular to walls. The train is moving at a constant velocity of 10 m/s parallel to the direction of motion of the ball. As seen from the ground, a) the direction of motion of the ball changes every 10 seconds b) speed of ball changes every 10 seconds c) average speed of ball over any 20 seconds intervals is fixed d) the acceleration of ball is the same as from the train

The correct option is b) speed of ball changes every 10 seconds, c) average speed of ball over any 20 seconds intervals is fixed, and d) the acceleration of the ball is the same as from the train

read more

A spring with one end attached to a mass and the other to a rigid support is stretched and released. a) magnitude of acceleration, when just released is maximum b) magnitude of acceleration, when at equilibrium position is maximum c) speed is maximum when mass is at equilibrium position d) magnitude of displacement is always maximum whenever speed is minimum

The correct answer is a) magnitude of acceleration, when just released is maximum and c) speed is maximum when mass is at equilibrium position

read more

A graph of x versus t is shown in the figure. Choose correct alternatives from below. a) the particle was released from rest at t=0 b) at B, the acceleration a>0 c) at C, the velocity and the acceleration vanish d) average velocity for the motion A and D is positive e) the speed at D exceeds that at E

The correct answer is a) the particle was released from rest at t=0, c) at C, the velocity and the acceleration vanish and e) the speed at D exceeds that at E

read more

The variation of quantity A with quantity B, plotted in figure describes the motion of a particle in a straight line. a) quantity B may represent time b) quantity A is velocity if motion is uniform c) quantity A is displacement if motion is uniform d) quantity A is velocity if motion is uniformly accelerated

The correct answer is a) quantity B may represent time, c) quantity A is displacement if motion is uniform, and d) quantity A is velocity if motion is uniformly accelerated

read more

A lift is coming from 8th floor and is just about to reach 4th floor. Taking ground floor as origin and positive direction upwards for all quantities, which one of the following is correct? a) x<0, v<0, a>0 b) x>0, v<0, a<0 c) x>0, v<0, a>0 d) x>0, v>0, a<0

The correct answer is a) x<0, v<0, a<0 The value of x and v becomes negative as the lift is moving from the 8th floor to the 4th floor whereas acceleration is acting upwards and stays...

read more

Provide clear explanations and examples to distinguish between: ( a ) The total length of a path covered by a particle and the magnitude of displacement over the same interval of time. ( b ) The magnitude of average velocity over an interval of time, and the average speed over the same interval. [Average speed of a particle over an interval of time is defined as the total path length divided by the time interval]. In ( a ) and ( b ) compare and find which among the two quantity is greater. When can the given quantities be equal? [For simplicity, consider one-dimensional motion only].

Answer - (a) Consider a football, which is passed to player B by player A and then immediately kicked back to player A along the same path. The magnitude of the ball's displacement is now 0 because...

read more