$p(x)=x^{3}+2 x^{2}+k x+3$ $p(3)=(3)^{3}+2(3)^{2}+3 k+3$ $=27+18+3 \mathrm{k}+3$ $=48+3 k$ Since, that the reminder is 21 $\therefore 3 \mathrm{k}+48=21$ $\Rightarrow 3 \mathrm{k}=-27$ $\Rightarrow...
If two zeroes of the polynomial $p(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$ are $\sqrt{2}$ and $-\sqrt{2}$, find its other two zeroes.
$p(x)=2 x^{4}-3 x^{3}-3 x^{2}+6 x-2$ and the two zeroes, $\sqrt{2}$ and $-\sqrt{2}$ the polynomial is $(x+\sqrt{2})(x-\sqrt{2})=x^{2}-2$. dividing $p(x)$ by $\left(x^{2}-2\right)$ $2 x^{4}-3 x^{3}-3...
If one zero of the polynomial $p(x)=x^{3}-6 x^{2}+11 x-6$ is 3 , find the other two zeroes.
$p(x)=x^{3}-6 x^{2}+11 x-6$ and its factor, $x+3$ dividing $p(x)$ by $(x-3)$ $x^{3}-6 x^{2}+11 x-6=(x-3)\left(x^{2}-3 x+2\right)$ $$ \begin{aligned} &=(x-3)\left[\left(x^{2}-(2+1)...
Show that the polynomial $f(x)=x^{2}+4 x+6$ has no zero.
$\operatorname{Let} t=\mathrm{x}^{2}$ $f(t)=t^{2}+4 t+6$ to find the zeroes, we will equate $\mathrm{f}(\mathrm{t})=0$ $\Rightarrow t^{2}+4 t+6=0$ $$ \text { Now, t } \begin{aligned} &=\frac{-4 \pm...
If $\boldsymbol{\alpha}, \boldsymbol{\beta}$ are the zeroes of the polynomial $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-5 \mathrm{x}+\mathrm{k}$ such that $\boldsymbol{\alpha}-\boldsymbol{\beta}=1$, find the value of $k$.
$x^{2}-5 x+k$ The co-efficients are $\mathrm{a}=1, \mathrm{~b}=-5$ and $\mathrm{c}=\mathrm{k}$. $\therefore \boldsymbol{\alpha}+\boldsymbol{\beta}=\frac{-\boldsymbol{b}}{\boldsymbol{a}}$...
If $\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma$ are the zeroes of the polynomial $\mathrm{p}(\mathrm{x})=6 \mathrm{x}^{3}+3 \mathrm{x}^{2}-5 \mathrm{x}+1$, find the value of $$ \left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right) $$
Given: p(x)=6x3+3x2-5x+1 \text { Given: } p(x)=6 x^{3}+3 x^{2}-5 x+1 =6x3-(-3)x2+(-5)x-1 =6 \mathrm{x}^{3}-(-3) \mathrm{x}^{2}+(-5) \mathrm{x}-1 Comparing the polynomial with...
Show that $(x+2)$ is a factor of $f(x)=x^{3}+4 x^{2}+x-6$.
$f(x)=x^{3}+4 x^{2}+x-6$ $f(-2)=(-2)^{3}+4(-2)^{2}+(-2)-6$ $=-8+16-2-6$ $=0$ $\therefore(x+2)$ is a factor of $f(x)=x^{3}+4 x^{2}+x-6$.
If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $(a-b)$, a and $(a+b)$, find the values of a and $b$.
$=x^{3}-3 x^{2}+x+1$ and its roots are $(a-b)$, a and $(a+b)$. Comparing the given polynomial with $\mathrm{Ax}^{3}+\mathrm{Bx}^{2}+\mathrm{Cx}+\mathrm{D}$, we have: $A=1, B=-3, C=1$ and $D=1$...
Find a quadratic polynomial whose zeroes are 2 and $-5$.
Since, the two roots of the polynomial are 2 and $-5$. Let $\boldsymbol{\alpha}=2$ and $\boldsymbol{\beta}=-5$ the sum of the zeroes, $\boldsymbol{\alpha}+\boldsymbol{\beta}=2+(-5)=-3$ Product of...
If one zero of the polynomial $\left(a^{2}+9\right) x^{2}-13 x+6 a$ is the reciprocal of the other, find the value of a.
$(a+9) x^{2}-13 x+6 a=0$ Here, $A=\left(a^{2}+9\right), B=13$ and $C=6$ a Let $\boldsymbol{\alpha}$ and $\frac{\mathbf{1}}{\boldsymbol{\alpha}}$ be the two zeroes. Then, product of the zeroes...
Find the zeroes of the polynomial $x^{2}+2 x-195$.
$p(x)=x^{2}+2 x-195$ Let $p(x)=0$ $\Rightarrow x^{2}+(15-13) x-195=0$ $\Rightarrow x^{2}+15 x-13 x-195=0$ $\Rightarrow \mathrm{x}(\mathrm{x}+15)-13(\mathrm{x}+15)=0$ $\Rightarrow(x+15)(x-13)=0$...
It is given that the difference between the zeroes of $4 \mathrm{x}^{2}-8 \mathrm{kx}+9$ is 4 and $\mathrm{k}>0$. Then, $\mathrm{k}=$ $?$ (a) $\frac{1}{2}$ (b) $\frac{3}{2}$ (c) $\frac{5}{2}$ (d) $\frac{7}{2}$
The correct option is option (c) $\frac{5}{2}$ Let the zeroes of the polynomial be $\boldsymbol{\alpha}$ and $\boldsymbol{\alpha}+4$ $p(x)=4 x^{2}-8 k x+9$ Comparing the given polynomial with $a...
The zeroes of the polynomial $P(x)=x^{2}-2 x-3$ are (a) $-3,1$ (b) $-3,-1$ (c) $3,-1$ (d) 3,1
(c) $3,-1$ Here, $p(x)=x^{2}-2 x-3$ Let $x^{2}-2 x-3=0$ $\Rightarrow x^{2}-(3-1) x-3=0$ $\Rightarrow x^{2}-3 x+x-3=0$ $\Rightarrow \mathrm{x}(\mathrm{x}-3)+1(\mathrm{x}-3)=0$...
On dividing a polynomial $\mathrm{p}(\mathrm{x})$ by a non-zero polynomial $\mathrm{q}(\mathrm{x}), \operatorname{let} \mathrm{g}(\mathrm{x})$ be the quotient and $\mathrm{r}(\mathrm{x})$ be the remainder, then $\mathrm{p}(\mathrm{x})=\mathrm{q}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})+\mathrm{r}(\mathrm{x})$, where (a) $\mathrm{r}(\mathrm{x})=0$ always (b) $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$ always (c) either $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$ (d) $r(x)=g(x)$
The correct option is (c) either $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$ By division algorithm on polynomials, either...
If $\alpha, \beta$ be the zeroes of the polynomial $2 \mathrm{x}^{2}+5 \mathrm{x}+\mathrm{k}$ such that $(\alpha+\beta)^{2}-\alpha \beta=\frac{21}{4}$, then $\mathrm{k}=$ ? (a) 3 (b) $-3$ (c) -2 (d) 2
The correct option is option (d) 2 $\alpha$ and $\beta$ are the zeroes of $2 \mathrm{x}^{2}+5 \mathrm{x}+\mathrm{k}$, we have: $\alpha+\beta=\frac{-5}{2}$ and $\alpha \beta=\frac{k}{2}$ it is given...
If one of the zeroes of the cubic polynomial $x^{3}+a x^{2}+b x+c$ is $-1$, then the product of the other two zeroes is (a) $a-b-1$ (b) $b-a-1$ (c) $1-a+b$ (d) $1+a-b$
The correct option is option (c) $1-\mathrm{a}+\mathrm{b}$ $-1$ is a zero of $x^{3}+a x^{2}+b x+c$, we have $(-1)^{3}+a \times(-1)^{2}+b \times(-1)+c=0$ $\Rightarrow a-b+c+1=0$ $\Rightarrow...
If two of the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ are 0 , then the third zero is (a) $\frac{-b}{a}$ (b) $\frac{b}{a}$ (c) $\frac{c}{a}$ (d) $\frac{-d}{a}$
The correct option is option (a) $\frac{-b}{a}$ $\alpha, 0$ and 0 be the zeroes of $a x^{3}+b x^{2}+c x+d=0$ Then the sum of zeroes $=\frac{-b}{a}$ $\Rightarrow \alpha+0+0=\frac{-b}{a}$ $\Rightarrow...
If $\alpha, \beta, \gamma$ be the zeroes of the polynomial $p(x)$ such that $(\alpha+\beta+\gamma)=3,(\alpha \beta+\beta \gamma+\gamma \alpha)$ $=-10$ and $\alpha \beta \gamma=-24$, then $\mathrm{p}(\mathrm{x})=?$ (a) $x^{3}+3 x^{2}-10 x+24$ (b) $x^{3}+3 x^{2}+10 x-24$ (c) $x^{3}-3 x^{2}-10 x+24$ (d) none of these
The correct option is option (c) $x^{3}-3 x^{2}-10 x+24$ $\alpha, \beta$ and $\gamma$ are the zeroes of polynomial $p(x)$. $(\alpha+\beta+\gamma)=3,(\alpha \beta+\beta \gamma+\gamma \alpha)=-10$ and...
If $\alpha, \beta, \gamma$ be the zeroes of the polynomial $\mathrm{x}^{3}-6 \mathrm{x}^{2}-\mathrm{x}+30$, then $(\alpha \beta+\beta \gamma+\gamma \alpha)=?$ (a) $-1$ (b) 1 (c) $-5$ (d) 30
The correct option is option (a) $-1$ It is given that $\alpha, \beta$ and $\gamma$ are the zeroes of $x^{3}-6 x^{2}-x+30$ $\therefore(\alpha \beta+\beta \gamma+\gamma \alpha)=\frac{\text {...
If $\alpha, \beta$ are the zeroes of the polynomial $\mathrm{x}^{2}+6 \mathrm{x}+2$, then $\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)=$ ? (a) 3 (b) $-3$ (c) 12 (d) $-12$
The correct option is option (b) $-3$ $\alpha$ and $\beta$ be the zeroes of $x^{2}+6 x+2$, we have: $\alpha+\beta=-6$ and $\alpha \beta=2$...
If $-2$ and 3 are the zeroes of the quadratic polynomial $x^{2}+(a+1) x+b$, then (a) $a=-2, b=6$ (b) $a=2, b=-6$ (c) $a=-2, b=-6$ (d) $a=2, b=6$
The correct option is option (c) $a=-2, b=-6$ $-2$ and 3 are the zeroes of $x^{2}+(a+1) x+b$. $(-2)^{2}+(a+1) \times(-2)+b=0 \Rightarrow 4-2 a-2+b=0$ $\Rightarrow b-2 a=-2$ ….(1) $3^{2}+(a+1) \times...
If one zero of the quadratic polynomial $\mathrm{kx}^{2}+3 \mathrm{x}+\mathrm{k}$ is 2 , then the value of $\mathrm{k}$ is (a) $\frac{5}{6}$ (b) $\frac{-5}{6}$ (c) $\frac{6}{5}$ (d) $\frac{-6}{5}$
The correct option is option (d) $\frac{-6}{5}$ Since 2 is a zero of $k x^{2}+3 x+k$, we have: $\mathrm{k} \times(2)^{2}+3(2)+\mathrm{k}=0$ $\Rightarrow 4 \mathrm{k}+\mathrm{k}+6=0$ $\Rightarrow 5...
If $\alpha$ and $\beta$ are the zeros of $\mathrm{x}^{2}+5 \mathrm{x}+8$, then the value of $(\alpha+\beta)$ is (a) 5 (b) $-5$ (c) 8 (d) $-8$
The correct option is option (b) $-5$ $\alpha$ and $\beta$ be the zeroes of $\mathrm{x}^{2}+5 \mathrm{x}+8$. If $\alpha+\beta$ is the sum of the roots and $\alpha \beta$ is the product, then the...
The zeroes of the quadratic polynomial $x^{2}+88 x+125$ are (a) both positive (b) both negative (c) one positive and one negative (d) both equal
The correct option is option (b) both negative $\alpha$ and $\beta$ be the zeroes of $\mathrm{x}^{2}+88 \mathrm{x}+125$ Then $\alpha+\beta=-88$ and $\alpha \times \beta=125$ This can only happen...
A quadratic polynomial whose zeroes are $\frac{3}{5}$ and $\frac{-1}{2}$, is (a) $10 x^{2}+x+3$ (b) $10 x^{2}+x-3$ (c) $10 x^{2}-x+3$ (d) $x^{2}-\frac{1}{10} x-\frac{3}{10}$
The correct option is option (d) $x^{2}-\frac{1}{10} x-\frac{3}{10}$ Since, the zeroes are $\frac{3}{5}$ and $\frac{-1}{2}$ $\alpha=\frac{3}{5}$ and $\beta=\frac{-1}{2}$ sum of the zeroes,...
A quadratic polynomial whose zeroes are 5 and -3, is (a) $x^{2}+2 x-15$ (b) $x^{2}-2 x+15$ (c) $x^{2}-2 x-15$ (d) none of these
(c) $x^{2}-2 x-15$ Since, the zeroes are 5 and $-3$. $\alpha=5$ and $\beta=-3$ Therefore, sum of the zeroes, $\alpha+\beta=5+(-3)=2$ product of the zeroes, $\alpha \beta=5 \times(-3)=-15$ The...
The sum and product of the zeroes of a quadratic polynomial are 3 and $-10$ respectively. The quadratic polynomial is (a) $x^{2}-3 x+10$ (b) $x^{2}+3 x-10$ (c) $x^{2}-3 x-10$ (d) $x^{2}+3 x+10$
The correct option is option (c) $x^{2}-3 x-10$ Sum of zeroes, $\alpha+\beta=3$ Also, product of zeroes, $\alpha \beta=-10$ $\therefore$ Required polynomial $=\mathrm{x}^{2}-(\alpha+\beta)+\alpha...
The zeros of the polynomial $7 x^{2}-\frac{11}{3} x-\frac{2}{3}$ are (a) $\frac{2}{3}, \frac{-1}{7}$ (a) $\frac{2}{7}, \frac{-1}{3}$ (c) $\frac{-2}{3}, \frac{1}{7}$ (d) none of these
The correct option is option (a) $\frac{2}{3}, \frac{-1}{7}$ $f(x)=7 x^{2}-\frac{11}{3} x-\frac{2}{3}=0$ $\Rightarrow 21 \mathrm{x}^{2}-11 \mathrm{x}-2=0$ $\Rightarrow 21 \mathrm{x}^{2}-14...
The zeros of the polynomial $\mathrm{x}^{2}+\frac{1}{6} \mathrm{x}-2$ are (a) $-3,4$ (b) $\frac{-3}{2}, \frac{4}{3}$ (c) $\frac{-4}{3}, \frac{3}{2}$ (d) none of these
The correct option is option (b) $\frac{-3}{2}, \frac{4}{3}$ $f(x)=x^{2}+\frac{1}{6} x-2=0$ $\Rightarrow 6 \mathrm{x}^{2}+\mathrm{x}-12=0$ $\Rightarrow 6 x^{2}+9 x-8 x-12=0$ $\Rightarrow 3 x(2...
The zeroes of the polynomial $4 \mathrm{x}^{2}+5 \sqrt{2} \mathrm{x}-3$ are (a) $-3 \sqrt{2}, \sqrt{2}$ (b) $-3 \sqrt{2}, \frac{\sqrt{2}}{2}$ (c) $\frac{-3}{\sqrt{2}}, \frac{\sqrt{2}}{4}$ (d) none of these
The correct option is option (c) $\frac{3}{\sqrt{2}}, \frac{\sqrt{2}}{4}$ $f(x)=4 x^{2}+5 \sqrt{2} x-3=0$ $\Rightarrow 4 x^{2}+6 \sqrt{2} x-\sqrt{2} x-3=0$ $\Rightarrow 2 \sqrt{2}...
The zeroes of the polynomial $x^{2}-\sqrt{2} x-12$ are (a) $\sqrt{2},-\sqrt{2}$ (b) $3 \sqrt{2},-2 \sqrt{2}$ (c) $-3 \sqrt{2}, 2 \sqrt{2}$ (d) $3 \sqrt{2}, 2 \sqrt{2}$
The correct option is option (b) $3 \sqrt{2},-2 \sqrt{2}$ $f(x)=x^{2}-\sqrt{2} x-12=0$ $\Rightarrow x^{2}-3 \sqrt{2} x+2 \sqrt{2} x-12=0$ $\Rightarrow x(x-3 \sqrt{2})+2 \sqrt{2}(x-3 \sqrt{2})=0$...
The Zeroes of the polynomial $\mathrm{x}^{2}-2 \mathrm{x}-3$ are (a) $-3,1$ (b) $-3,-1$ (c) $3,-1$ (d) 3,1
The correct option is option (c) $3,-1$ Let $f(x)=x^{2}-2 x-3=0$ $=x^{2}-3 x+x-3=0$ $=x(x-3)+1(x-3)=0$ $=(x-3)(x+1)=0$ $\Rightarrow \mathrm{x}=3$ or $\mathrm{x}=-1$
Which of the following is not a polynomial? (a) $\sqrt{3} x^{2}-2 \sqrt{3} x+5$ (b) $9 x^{2}-4 x+\sqrt{2}$ (c) $\frac{3}{2} x^{3}+6 x^{2}-\frac{1}{\sqrt{2}} x-8$ (d) $x+\frac{3}{x}$
The correct option is option (d) $x+\frac{3}{x}$ is not a polynomial. It is because in the second term, the degree of $x$ is $-1$ and an expression with a negative degree is not a polynomial.
Which of the following is a polynomial? (a) $x^{2}-5 x+6 \sqrt{x}+3$ (b) $x^{3 / 2}-x+x^{1 / 2}+1$ (c) $\sqrt{x}+\frac{1}{\sqrt{x}}$ (d) None of these
The correct option is option (d) none of these A polynomial in $x$ of degree $n$ is an expression of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots+$ $a_{n} x^{n}$, where $a_{n} \neq 0$.
If the zeroes of the polynomial $f(x)=x^{3}-3 x^{2}+x+1$ are $(a-b)$, a and $(a+b)$, find the values of a and b.
using the relationship between the zeroes of he quadratic polynomial. Sum of zeroes $=\frac{-\left(\text { coef ficient of } x^{2}\right)}{\text { coefficient of } x^{3}}$ $\therefore...
If $\alpha, \beta$ are the zeroes of the polynomial $f(x)=x^{2}+x-2$, then $\left(\frac{\alpha}{\beta}-\frac{\alpha}{\beta}\right)$.
using the relationship between the zeroes of the quadratic polynomial. We have Sum of zeroes $=\frac{-(\text { coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes...
If $\alpha, \beta$ are the zeroes of the polynomial $f(x)=5 x^{2}-7 x+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}=?$
using the relationship between the zeroes of he quadratic polynomial. Sum of zeroes $=\frac{-\text { (coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text {...
If $\alpha$ and $\beta$ are the zeros of the polynomial $f(x)=6 x^{2}+x-2$ find the value of $\left(\frac{\alpha}{\beta}+\frac{\alpha}{\beta}\right)$
using the relationship between the zeroes of the quadratic polynomial. Sum of zeroes $=\frac{-(\text { coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text {...
If $\alpha, \beta$ are the zeroes of the polynomial $\mathrm{x}^{2}+6 \mathrm{x}+2$, then $\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)=$ ? (a) 3 (b) $-3$ (c) 12 (d) $-12$
The correct option is option (b) $-3$ Since $\alpha$ and $\beta$ be the zeroes of $x^{2}+6 x+2$, we have: $\alpha+\beta=-6$ and $\alpha \beta=2$...
If one zero of $3 x^{2}-8 x+k$ be the reciprocal of the other, then $k=$ ? (a) 3 (b) $-3$ (c) $\frac{1}{3}$ (d) $\frac{-1}{3}$
The correct option is option (a) $\mathrm{k}=3$ Let $\alpha$ and $\frac{1}{\alpha}$ be the zeroes of $3 x^{2}-8 x+k$. Then the product of zeroes $=\frac{k}{3}$ $\Rightarrow \alpha \times...
If one zero of the quadratic polynomial $(\mathrm{k}-1) \mathrm{x}^{2}-\mathrm{kx}+1$ is $-4$, then the value of $\mathrm{k}$ is (a) $\frac{-5}{4}$ (b) $\frac{5}{4}$ (c) $\frac{-4}{3}$ (d) $\frac{4}{3}$
The correct option is option (b) $\frac{5}{4}$ Since $-4$ is a zero of $(k-1) x^{2}+k x+1$, we have: $(k-1) \times(-4)^{2}+k \times(-4)+1=0$ $\Rightarrow 16 \mathrm{k}-16-4 \mathrm{k}+1=0$...
If one zero of the quadratic polynomial $\mathrm{kx}^{2}+3 \mathrm{x}+\mathrm{k}$ is 2 , then the value of $\mathrm{k}$ is (a) $\frac{5}{6}$ (b) $\frac{-5}{6}$ (c) $\frac{6}{5}$ (d) $\frac{-6}{5}$
The correct option is option (d) $\frac{-6}{5}$ Since 2 is a zero of $k x^{2}+3 x+k$, we have: $\mathrm{k} \times(2)^{2}+3(2)+\mathrm{k}=0$ $\Rightarrow 4 \mathrm{k}+\mathrm{k}+6=0$ $\Rightarrow 5...
If $\alpha$ and $\beta$ are the zeroes of $2 \mathrm{x}^{2}+5 \mathrm{x}-9$, then the value of $\alpha \beta$ is (a) $\frac{-5}{2}$ (b) $\frac{5}{2}$ (c) $\frac{-9}{2}$ (d) $\frac{9}{2}$
The correct option is option (c) $\frac{-9}{2}$ Since, $\alpha$ and $\beta$ be the zeroes of $2 \mathrm{x}^{2}+5 \mathrm{x}-9$. If $\alpha+\beta$ are the zeroes, then $\mathrm{x}^{2}-(\alpha+\beta)...
The zeroes of the quadratic polynomial $x^{2}+88 x+125$ are (a) both positive (b) both negative (c) one positive and one negative (d) both equal
The correct option is option (b) both negative Let $\alpha$ and $\beta$ be the zeroes of $\mathrm{x}^{2}+88 \mathrm{x}+125$ Then $\alpha+\beta=-88$ and $\alpha \times \beta=125$ This can only happen...
A quadratic polynomial whose zeroes are 5 and -3, is (a) $x^{2}+2 x-15$ (b) $x^{2}-2 x+15$ (c) $x^{2}-2 x-15$ (d) none of these
The correct option is option (c) $x^{2}-2 x-15$ Since, the zeroes are 5 and $-3$. Let $\alpha=5$ and $\beta=-3$ sum of the zeroes, $\alpha+\beta=5+(-3)=2$ Also, product of the zeroes, $\alpha...
The zeros of the polynomial $7 x^{2}-\frac{11}{3} x-\frac{2}{3}$ are (a) $\frac{2}{3}, \frac{-1}{7}$ (a) $\frac{2}{7}, \frac{-1}{3}$ (c) $\frac{-2}{3}, \frac{1}{7}$ (d) none of these
The correct option is option (a) $\frac{2}{3}, \frac{-1}{7}$ Let $f(x)=7 x^{2}-\frac{11}{3} x-\frac{2}{3}=0$ $\Rightarrow 21 \mathrm{x}^{2}-11 \mathrm{x}-2=0$ $\Rightarrow 21 \mathrm{x}^{2}-14...
The zeroes of the polynomial $4 \mathrm{x}^{2}+5 \sqrt{2} \mathrm{x}-3$ are (a) $-3 \sqrt{2}, \sqrt{2}$ (b) $-3 \sqrt{2}, \frac{\sqrt{2}}{2}$ (c) $\frac{-3}{\sqrt{2}}, \frac{\sqrt{2}}{4}$ (d) none of these
The correct option is option (c) $\frac{3}{\sqrt{2}}, \frac{\sqrt{2}}{4}$ Let $f(x)=4 x^{2}+5 \sqrt{2} x-3=0$ $\Rightarrow 4 x^{2}+6 \sqrt{2} x-\sqrt{2} x-3=0$ $\Rightarrow 2 \sqrt{2}...
The Zeroes of the polynomial $\mathrm{x}^{2}-2 \mathrm{x}-3$ are (a) $-3,1$ (b) $-3,-1$ (c) $3,-1$ (d) 3,1
The correct option is option(c) $3,-1$ Let $f(x)=x^{2}-2 x-3=0$ $=x^{2}-3 x+x-3=0$ $=x(x-3)+1(x-3)=0$ $=(x-3)(x+1)=0$ $\Rightarrow \mathrm{x}=3$ or $\mathrm{x}=-1$
Which of the following is not a polynomial? (a) $\sqrt{3} x^{2}-2 \sqrt{3} x+5$ (b) $9 x^{2}-4 x+\sqrt{2}$ (c) $\frac{3}{2} x^{3}+6 x^{2}-\frac{1}{\sqrt{2}} x-8$ (d) $x+\frac{3}{x}$
The correct option is option(d) $x+\frac{3}{x}$ is not a polynomial. It is because in the second term, the degree of $x$ is $-1$ and an expression with a negative degree is not a polynomial.
Which of the following is a polynomial? (a) $x^{2}-5 x+6 \sqrt{x}+3$ (b) $x^{3 / 2}-x+x^{1 / 2}+1$ (c) $\sqrt{x}+\frac{1}{\sqrt{x}}$ (d) None of these
The correct option is option(d) none of these A polynomial in $x$ of degree $n$ is an expression of the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots+$ $a_{n} x^{n}$, where $a_{n} \neq 0$.
If the zeroes of the polynomial $f(x)=x^{3}-3 x^{2}+x+1$ are $(a-b)$, a and $(a+b)$, find the values of a and b.
using the relationship between the zeroes of he quadratic polynomial. Sum of zeroes $=\frac{-\left(\text { coef ficient of } x^{2}\right)}{\text { coefficient of } x^{3}}$ $\therefore...
If $\alpha, \beta$ are the zeroes of the polynomial $f(x)=5 x^{2}-7 x+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}=?$
using the relationship between the zeroes of he quadratic polynomial. => Sum of zeroes $=\frac{-\text { (coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text...
If $\alpha$ and $\beta$ are the zeros of the polynomial $f(x)=6 x^{2}+x-2$ find the value of $\left(\frac{\alpha}{\beta}+\frac{\alpha}{\beta}\right)$
using the relationship between the zeroes of the quadratic polynomial. Sum of zeroes $=\frac{-(\text { coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text {...
If $\alpha, \beta$ are the zeroes of the polynomial $f(x)=x^{2}-5 x+k$ such that $\alpha-\beta=1$, find the value of $\mathrm{k}=?$
using the relationship between the zeroes of the quadratic polynomial. Sum of zeroes $=\frac{-(\text { coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text {...
Find the zeroes of the quadratic polynomial $f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$.
For finding the zeroes of the quadratic polynomial we will equate $f(x)$ to 0 Hence, the zeroes of the quadratic polynomial $f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ are $-\frac{2}{\sqrt{3}}$ or...
Find the zeroes of the quadratic polynomial $f(x)=6 x^{2}-3$.
To find the zeroes of the quadratic polynomial we will equate $\mathrm{f}(\mathrm{x})$ to 0 Hence, the zeroes of the quadratic polynomial $f(x)=6 x^{2}-3$ are...
Find the sum of the zeros and the product of zeros of a quadratic polynomial, are $-\frac{1}{2}$ and $\$-3$ respectively. Write the polynomial.
We can find the quadratic polynomial if we know the sum of the roots and product of the roots by using the formula $\mathrm{x}^{2}-($ sum of the zeroes $) \mathrm{x}+$ product of zeroes $\Rightarrow...
State Division Algorithm for Polynomials.
"If $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are two polynomials such that degree of $\mathrm{f}(\mathrm{x})$ is greater than degree of $\mathrm{g}(\mathrm{x})$ where...
If $\alpha$ and $\beta$ be the zeroes of the polynomial $2 \mathrm{x}^{2}-7 \mathrm{x}+\mathrm{k}$ write the value of $(\alpha+\beta+\alpha \beta$.
using the relationship between the zeroes of he quadratic polynomial. Sum of zeroes $=\frac{-(\text { coef ficient of } x)}{\text { coefficient of } x^{2}}$ and Product of zeroes $=\frac{\text {...
If $x^{3}+x^{2}-a x+b$ is divisible by $\left(x^{2}-x\right)$, write the value of a and $b$.
Equating $\mathrm{x}^{2}-\mathrm{x}$ to 0 to find the zeroes, we will get x(x-1)=0 x(x-1)=0 ⇒x=0 or x-1=0 \Rightarrow \mathrm{x}=0 \text { or } \mathrm{x}-1=0...
If $(a-b), a$ and $(a+b)$ are zeros of the polynomial $2 x 3-6 x 2+5 x-7$ write the value of a.
using the relationship between the zeroes of the quadratic polynomial.$$ \begin{aligned} &\text { Sum of zeroes }=\frac{-\left(\text { coefficient of } x^{2}\right)}{\text { coefficient of } x^{3}}...
If the product of the zero of the polynomial $\left(x^{2}-4 x+k\right)$ is 3 . Find the value of $k$.
using the relationship between the zeroes of he quadratic polynomial. Product of zeroes $=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$ $\Rightarrow 3=\frac{k}{1}$ $\Rightarrow...
If the sum of the zeros of the quadratic polynomial $\mathrm{kx}^{2}-3 \mathrm{x}+5$ is 1 write the value of $\mathrm{k}$.
using the relationship between the zeroes of the quadratic polynomial. Sum of zeroes $=\frac{-(\text { coef ficient of } x)}{\text { coefficient of } x^{2}}$ $\Rightarrow 1=\frac{-(-3)}{k}$...
Write the zeros of the polynomial $f(x)=x^{2}-x-6$.
$f(x)=x^{2}-x-6$ $=x^{2}-3 x+2 x-6$ $=x(x-3)+2(x-3)$ $=(x-3)(x+2)$ $f(x)=0 \Rightarrow(x-3)(x+2)=0$ $$ \begin{aligned} &\Rightarrow(x-3)=0 \text { or }(x+2)=0 \\ &\Rightarrow x=3 \text { or } x=-2...
If $-2$ is a zero of the polynomial $3 x^{2}+4 x+2 k$ then find the value of $k$.
$x=-2$ is one zero of the polynomial $3 x^{2}+4 x+2 k$ Therefore, it will satisfy the above polynomial. Now, we have $3(-2)^{2}+4(-2) 1+2 k=0$ $\Rightarrow 12-8+2 k=0$ $\Rightarrow...
If one zero of the quadratic polynomial $\mathrm{kx}^{2}+3 \mathrm{x}+\mathrm{k}$ is 2 , then find the value of $\mathrm{k}$.
$x=2$ is one zero of the quadratic polynomial $k x^{2}+3 x+k$ Therefore, it will satisfy the above polynomial. $k(2)^{2}+3(2)+k=0$ $\Rightarrow 4 \mathrm{k}+6+\mathrm{k}=0$ $\Rightarrow 5...
Find $\alpha, \beta$ are the zeros of polynomial $\alpha+\beta=6$ and $\alpha \beta=4$ then write the polynomial.
If the zeroes of the quadratic polynomial are $\alpha$ and $\beta$ then the quadratic polynomial can be found as $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$ $\ldots \ldots(1)$...
Find the zeroes of the polynomial $x^{2}-3 x-m(m+3)$
$f(x)=x^{2}-3 x-m(m+3)$ adding and subtracting $\mathrm{mx}$, $f(x)=x^{2}-m x-3 x+m x-m(m+3)$ $=x[x-(m+3)]+m[x-(m+3)]$ $=[x-(m+3)](x+m)$ $f(x)=0 \Rightarrow[x-(m+3)](x+m)=0$...
Find all the zeroes of polynomial $\left(2 x^{4}-11 x^{3}+7 x^{2}+13 x-7\right)$, it being given that two of its zeroes are $(3+\sqrt{2})$ and $(3-\sqrt{2})$.
$f(x)=2 x^{4}-11 x^{3}+7 x^{2}+13 x-7$. Since $(3+\sqrt{2})$ and $(3-\sqrt{2})$ are the zeroes of $f(x)$ it follows that each one of $(x+3+\sqrt{2})$ and $(x+3-\sqrt{2})$ is a factor of $f(x)$...
Find all the zeroes of $\left(2 x^{4}-3 x^{3}-5 x^{2}+9 x-3\right)$, it is being given that two of its zeroes are $\sqrt{3}$ and $-\sqrt{3}$.
The given polynomial is $f(x)=2 x^{4}-3 x^{3}-5 x^{2}+9 x-3$ Since $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of $f(x)$, it follows that each one of $(x-\sqrt{3})$ and $(x+\sqrt{3})$ is a factor of...
If 2 and $-2$ are two zeroes of the polynomial $\left(x^{4}+x^{3}-34 x^{2}-4 x+120\right)$, find all the zeroes of the given polynomial.
Let $f(x)=x^{4}+x^{3}-34 x^{2}-4 x+120$ Since 2 and $-2$ are the zeroes of $f(x)$, it follows that each one of $(x-2)$ and $(x+2)$ is a factor of $f(x)$ Consequently,...
If 3 and $-3$ are two zeroes of the polynomial $\left(x^{4}+x^{3}-11 x^{2}-9 x+18\right)$, find all the zeroes of the given polynomial.
Since 3 and $-3$ are the zeroes of $f(x)$, it follows that each one of $(x+3)$ and $(x-3)$ is a factor of $f(x)$ Consequently, $(x-3)(x+3)=\left(x^{2}-9\right)$ is a factor of $f(x)$. On dividing...
If 1 and $-2$ are two zeroes of the polynomial $\left(x^{3}-4 x^{2}-7 x+10\right)$, find its third zero.
Let $f(x)=x^{3}-4 x^{2}-7 x+10$ Since 1 and $-2$ are the zeroes of $f(x)$, it follows that each one of $(x-1)$ and $(x+2)$ is a factor of $f(x)$ Consequently, $(x-1)(x+2)=\left(x^{2}+x-2\right)$ is...
It is given that $-1$ is one of the zeroes of the polynomial $x^{3}+2 x^{2}-11 x-12$. Find all the zeroes of the given polynomial.
Let $f(x)=x^{3}+2 x^{2}-11 x-12$ Since $-1$ is a zero of $f(x),(x+1)$ is a factor of $f(x)$. On dividing $\mathrm{f}(\mathrm{x})$ by $(\mathrm{x}+1)$, we get $$ \begin{aligned} &f(x)=x^{3}+2...
On dividing $3 x^{3}+x^{2}+2 x+5$ is divided by a polynomial $g(x)$, the quotient and remainder are $(3 x-5)$ and $(9 x+10)$ respectively. Find $g(x)$
using division rule, Dividend $=$ Quotient $\times$ Divisor $+$ Remainder $\therefore 3 x^{3}+x^{2}+2 x+5=(3 x-5) g(x)+9 x+10$ $\Rightarrow 3 x^{3}+x^{2}+2 x+5-9 x-10=(3 x-5) g(x)$ $\Rightarrow 3...
If $f(x)=x^{3}-3 x+5 x-3$ is divided by $g(x)=x^{2}-2$
Quotient $q(x)=x-\overline{3}$ Remainder $r(x)=7 x-9$ 7. If $f(x)=x^{4}-3 x^{2}+4 x+5$ is divided by $g(x)=x^{2}-x+1$
Find a cubic polynomial whose zeroes are $\frac{1}{2}, 1$ and $-3$.
If the zeroes of the cubic polynomial are a, b and c then the cubic polynomial can be found as $x^{3}-(a+b+c) x^{2}+(a b+b c+c a) x-a b c$ Let $a=\frac{1}{2}, b=1$ and $c=-3$ Substituting the values...
Find the quadratic polynomial, sum of whose zeroes is $\sqrt{2}$ and their product is $\left(\frac{1}{3}\right)$.
Quadratic equation can be found if we know the sum of the roots and product of the roots by using the formula: $\mathrm{x}^{2}-($ Sum of the roots) $\mathrm{x}+$ Product of roots $=0$ $\Rightarrow...
Find the quadratic polynomial, sum of whose zeroes is 0 and their product is $-1$. Hence, find the zeroes of the polynomial.
Let $\alpha$ and $\beta$ be the zeroes of the required polynomial $f(x)$. Then $(\alpha+\beta)=0$ and $\alpha \beta=-1$ $\therefore f(x)=x^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$ $\Rightarrow...
Find the zeroes of the quadratic polynomial $2 x^{2}-11 x+15$ and verify the relation between the zeroes and the coefficients.
$$ \begin{aligned} \mathrm{f}(\mathrm{x}) &=2 \mathrm{x}^{2}-11 \mathrm{x}+15 \\ &=2 \mathrm{x}^{2}-(6 \mathrm{x}+5 \mathrm{x})+15 \\ &=2 \mathrm{x}^{2}-6 \mathrm{x}-5 \mathrm{x}+15 \\ =& 2...