Polynomials

If $\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma$ are the zeroes of the polynomial $\mathrm{p}(\mathrm{x})=6 \mathrm{x}^{3}+3 \mathrm{x}^{2}-5 \mathrm{x}+1$, find the value of $$ \left(\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}\right) $$

 Given: p(x)=6x3+3x2-5x+1 \text { Given: } p(x)=6 x^{3}+3 x^{2}-5 x+1 =6x3-(-3)x2+(-5)x-1 =6 \mathrm{x}^{3}-(-3) \mathrm{x}^{2}+(-5) \mathrm{x}-1 Comparing the polynomial with...

read more

On dividing a polynomial $\mathrm{p}(\mathrm{x})$ by a non-zero polynomial $\mathrm{q}(\mathrm{x}), \operatorname{let} \mathrm{g}(\mathrm{x})$ be the quotient and $\mathrm{r}(\mathrm{x})$ be the remainder, then $\mathrm{p}(\mathrm{x})=\mathrm{q}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})+\mathrm{r}(\mathrm{x})$, where (a) $\mathrm{r}(\mathrm{x})=0$ always (b) $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$ always (c) either $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$ (d) $r(x)=g(x)$

The correct option is (c) either $\mathrm{r}(\mathrm{x})=0$ or $\operatorname{deg} \mathrm{r}(\mathrm{x})<\operatorname{deg} \mathrm{g}(\mathrm{x})$ By division algorithm on polynomials, either...

read more

If $\alpha, \beta, \gamma$ be the zeroes of the polynomial $p(x)$ such that $(\alpha+\beta+\gamma)=3,(\alpha \beta+\beta \gamma+\gamma \alpha)$ $=-10$ and $\alpha \beta \gamma=-24$, then $\mathrm{p}(\mathrm{x})=?$ (a) $x^{3}+3 x^{2}-10 x+24$ (b) $x^{3}+3 x^{2}+10 x-24$ (c) $x^{3}-3 x^{2}-10 x+24$ (d) none of these

The correct option is option (c) $x^{3}-3 x^{2}-10 x+24$ $\alpha, \beta$ and $\gamma$ are the zeroes of polynomial $p(x)$. $(\alpha+\beta+\gamma)=3,(\alpha \beta+\beta \gamma+\gamma \alpha)=-10$ and...

read more