Constructions

To construct a triangle similar to a given △ABC with its sides 7/3 of the corresponding sides of △ABC, draw a ray BX making acute angle with BC and X lies on the opposite side of A with respect to BC. The points B1, B2, …., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C‘ is drawn parallel to B3C where C‘ lies on BC produced. Finally, line segment A‘C‘ is drawn parallel to AC.

False Support: Allow us to attempt to build the figure as given in the inquiry. Steps of development, Define a boundary section \[BC.\] With \[B\text{ }and\text{ }C\]as focuses, draw two circular...

read more

Draw two concentric circles of radii \[\mathbf{3}\text{ }\mathbf{cm}\text{ }\mathbf{and}\text{ }\mathbf{5}\text{ }\mathbf{cm}.\]Taking a point on outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.

Steps of construction: Draw a circle with focus \[\mathbf{O}\]and radius \[\mathbf{3}\text{ }\mathbf{cm}.\] Draw one more circle with focus \[\mathbf{O}\]and radius \[\mathbf{5}\text{...

read more

Draw a parallelogram \[\mathbf{ABCD}\]in which \[\mathbf{BC}\text{ }=\text{ }\mathbf{5}\text{ }\mathbf{cm},\text{ }\mathbf{AB}\text{ }=\text{ }\mathbf{3}\text{ }\mathbf{cm}\]and angle \[\mathbf{ABC}\text{ }=\text{ }\mathbf{60}{}^\circ ,\]divide it into triangles \[\mathbf{BCD}\]and \[\mathbf{ABD}\]by the diagonal \[\mathbf{BD}.\]Construct the triangle \[\mathbf{BD}~\mathbf{C}~\]similar to triangle \[\mathbf{BDC}\]with scale factor\[\mathbf{4}/\mathbf{3}\]. Draw the line segment \[\mathbf{D}\mathbf{A}~\]parallel to \[\mathbf{DA}\]where \[\mathbf{A}\] lies on extended side\[\mathbf{BA}\]. Is \[\mathbf{A}\mathbf{BC}\mathbf{D}\] a parallelogram?

Steps of construction:   Define a boundary \[\mathbf{AB}=\mathbf{3}\text{ }\mathbf{cm}.\] Draw a beam \[\mathbf{BY}\]making an intense \[\angle \mathbf{ABY}=\mathbf{60}{}^\circ .\] With focus...

read more

Two line segments \[\mathbf{AB}\text{ }\mathbf{and}\text{ }\mathbf{AC}\]include an angle of \[\mathbf{60}{}^\circ \]where \[\mathbf{AB}\text{ }=\text{ }\mathbf{5}\text{ }\mathbf{cm}\text{ }\mathbf{and}\text{ }\mathbf{AC}\text{ }=\text{ }\mathbf{7}\text{ }\mathbf{cm}.\]Locate points \[\mathbf{P}\text{ }\mathbf{and}\text{ }\mathbf{Q}\text{ }\mathbf{on}\text{ }\mathbf{AB}\text{ }\mathbf{and}\text{ }\mathbf{AC},\]respectively such that \[\mathbf{AP}\text{ }=\text{ }{\scriptscriptstyle 3\!/\!{ }_4}\text{ }\mathbf{AB}\text{ }\mathbf{and}\text{ }\mathbf{AQ}\text{ }=\text{ }{\scriptscriptstyle 1\!/\!{ }_4}\text{ }\mathbf{AC}.\] Join \[\mathbf{P}\text{ }\mathbf{and}\text{ }\mathbf{Q}\]and measure the length \[\mathbf{PQ}.\]

    Steps of construction: 1.Define a boundary portion \[AB\text{ }=\text{ }5\text{ }cm.\] Draw \[\angle BAZ\text{ }=\text{ }60{}^\circ .\] With focus \[A\]and sweep\[7\text{ }cm\], draw a...

read more

To divide a line segment \[\mathbf{AB}\]in the ratio\[\mathbf{5}\text{ }:\text{ }\mathbf{6}\], draw a ray \[\mathbf{AX}\]such that \[\angle \mathbf{BAX}\] is an acute angle, then draw a ray \[\mathbf{BY}\]parallel to \[\mathbf{AX}\]and the points \[{{\mathbf{A}}_{\mathbf{1}}},\text{ }{{\mathbf{A}}_{\mathbf{2}}},\text{ }{{\mathbf{A}}_{\mathbf{3}}},\text{ }\ldots \]and \[{{\mathbf{B}}_{\mathbf{1}}},\text{ }{{\mathbf{B}}_{\mathbf{2}}},\text{ }{{\mathbf{B}}_{\mathbf{3}}},\text{ }\ldots \]are located at equal distances on ray \[\mathbf{AX}\]and\[\mathbf{BY}\], respectively. Then the points joined are \[\left( \mathbf{A} \right)\text{ }{{\mathbf{A}}_{\mathbf{5}}}~\mathbf{and}\text{ }{{\mathbf{B}}_{\mathbf{6}}}~\] \[\left( \mathbf{B} \right)\text{ }{{\mathbf{A}}_{\mathbf{6}}}~\mathbf{and}\text{ }{{\mathbf{B}}_{\mathbf{5}}}~\] \[~\left( \mathbf{C} \right)\text{ }{{\mathbf{A}}_{\mathbf{4}}}~\mathbf{and}\text{ }{{\mathbf{B}}_{\mathbf{5}}}\] \[\left( \mathbf{D} \right)\text{ }{{\mathbf{A}}_{\mathbf{5}}}~\mathbf{and}\text{ }{{\mathbf{B}}_{\mathbf{4}}}\]

\[\left( \mathbf{A} \right)\text{ }{{\mathbf{A}}_{\mathbf{5}}}~\mathbf{and}\text{ }{{\mathbf{B}}_{\mathbf{6}}}\] As per the inquiry, A line portion \[AB\]in the proportion \[5:7\] Along these...

read more

To divide a line segment \[\mathbf{AB}\]in the ratio\[\mathbf{4}:\mathbf{7}\], a ray \[\mathbf{AX}\]is drawn first such that \[\mathbf{BAX}\]is an acute angle and then points \[{{\mathbf{A}}_{\mathbf{1}}},\text{ }{{\mathbf{A}}_{\mathbf{2}}},\text{ }{{\mathbf{A}}_{\mathbf{3}}},\ldots .\]are located at equal distances on the ray \[\mathbf{AX}\]and the point \[\mathbf{B}\]is joined to \[\left( \mathbf{A} \right)\text{ }{{\mathbf{A}}_{\mathbf{12}}}~\left( \mathbf{B} \right)\text{ }{{\mathbf{A}}_{\mathbf{11}}}~\left( \mathbf{C} \right)\text{ }{{\mathbf{A}}_{\mathbf{10}}}~\left( \mathbf{D} \right)\text{ }{{\mathbf{A}}_{\mathbf{9}}}\]

SOLUTION:- \[\left( \mathbf{B} \right)\text{ }{{\mathbf{A}}_{\mathbf{11}}}\] As per the inquiry, A line section\[~AB\] in the proportion \[4:7\] Thus, \[A:B\text{ }=\text{ }4:7\] Presently, Draw a...

read more

To divide a line segment \[\mathbf{AB}\]in the ratio\[\mathbf{5}:\mathbf{7}\], first a ray \[\mathbf{AX}\]is drawn so that \[\mathbf{BAX}\]is an acute angle and then at equal distances points are marked on the ray \[\mathbf{AX}\]such that the minimum number of these points is (A) \[\mathbf{8}\](B) \[\mathbf{10}\](C)\[~\mathbf{11}\] (D) \[\mathbf{12}\]

SOLUTION:- \[\left( D \right)\text{ }12\] As indicated by the inquiry, A line fragment \[AB\]in the proportion \[5:7\] In this way, \[A:B\text{ }=\text{ }5:7\] Presently, Draw a beam \[AX\]making an...

read more