An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of the triangle is maximum when θ = π/6.
An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of the triangle is maximum when θ = π/6.

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 77

$Δ ABC$ is an isosceles triangle such that $AB = AC.$

The vertical angle $BAC = 2θ$

Triangle is inscribed in the circle with center $O$ and radius $a.$

Draw $AM$ perpendicular to $BC.$

Since, $Δ ABC$ is an isosceles triangle, the circumcenter of the circle will lie on the perpendicular from $A$ to $BC.$

Let $O$ be the circumcenter.

\[BOC=2\times 2\theta =4\theta \text{ }\left( Using\text{ }central\text{ }angle\text{ }theorem \right)\]

\[COM\text{ }=\text{ }2\theta \] (Since, $Δ OMB$ and $Δ OMC$ are congruent triangles)

\[OA\text{ }=\text{ }OB\text{ }=\text{ }OC\text{ }=\text{ }a\text{ }\left( radius\text{ }of\text{ }the\text{ }circle \right)\]

In $Δ OMC,$

\[CM\text{ }=\text{ }asin2\theta \]

\[OM\text{ }=\text{ }acos2\theta \]

\[BC\text{ }=\text{ }2CM\] (Perpendicular from the center bisects the chord)

\[BC\text{ }=\text{ }2asin2\theta \]

Height of \[\Delta \text{ }ABC\text{ }=\text{ }AM\text{ }=\text{ }AO\text{ }+\text{ }OM\]

\[AM\text{ }=\text{ }a\text{ }+\text{ }acos2\theta \]

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 78
RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 79

RD Sharma Solutions for Class 12 Maths Chapter 18 Maxima and Minima Image 80