Solution:
According to the given question
\[\angle ACB\text{ }=\text{ }{{90}^{o}}~\] [Angle in a semi-circle is 90o]
Also,
\[\angle ABC\text{ }=\text{ }{{180}^{o}}-\angle ADC\] \[=\text{ }{{180}^{o}}-\text{ }{{130}^{o}}~=\text{ }{{50}^{o}}\]
[Pair of opposite angles in a cyclic quadrilateral are supplementary]
By angle sum property of the right triangle ACB, we have
\[\angle BAC\text{ }=\text{ }{{90}^{o}}-\angle ABC\]
\[=\text{ }{{90}^{o}}-\text{ }{{50}^{o}}\]
Hence, \[\angle BAC\text{ }=\text{ }{{40}^{o}}\]