Suppose the given wire, which is to be made into a square and a circle, is cut into two pieces of length $x$ and $y$ $m$ respectively. Then,
\[x\text{ }+\text{ }y\text{ }=\text{ }28\text{ }\Rightarrow \text{ }y\text{ }=\text{ }\left( 28\text{ }-\text{ }x \right)\]
We know that perimeter of square, \[4\text{ }\left( side \right)\text{ }=\text{ }x\]
\[Side\text{ }=\text{ }x/4\]
Area of square \[=\text{ }{{\left( x/4 \right)}^{2}}~=\text{ }{{x}^{2}}/16\]
Circumference of circle, \[2\text{ }\pi \text{ }r\text{ }=\text{ }y\]
\[r\text{ }=\text{ }y/\text{ }2\text{ }\pi \]