$\left| \begin{matrix}
49 & 1 & 6 \\
39 & 7 & 4 \\
26 & 2 & 3 \\
\end{matrix} \right|$
Let $\vartriangle =\left| \begin{matrix}
49 & 1 & 6 \\
39 & 7 & 4 \\
26 & 2 & 3 \\
\end{matrix} \right|$
Now by applying column operation, ${{C}_{1}}\to {{C}_{1}}-8{{C}_{3}}$, we get
$\vartriangle =\left| \begin{matrix}
1 & 1 & 6 \\
7 & 7 & 4 \\
2 & 2 & 3 \\
\end{matrix} \right|$
As, ${{C}_{1}}={{C}_{2}}$, hence determinant Is zero.