Let $r$ $and$ $h$ be the radius and height of the cylinder, respectively. Then,
Volume $(V)$ of the cylinder \[=\text{ }\pi {{r}^{2}}~h\]
\[\to \text{ }100\text{ }=\text{ }\pi {{r}^{2}}~h\]
\[\to h\text{ }=\text{ }100/\text{ }\pi {{r}^{2}}\]
Surface area $(S)$ of the cylinder \[=\text{ }2\text{ }\pi {{r}^{2}}~+\text{ }2\text{ }\pi r\text{ }h\text{ }=\text{ }2\text{ }\pi {{r}^{2}}~+\text{ }2\text{ }\pi r\text{ }\times \text{ }100/\text{ }\pi {{r}^{2}}\]