The following relation is defined on the set of real numbers.
(i) aRb if a – b > 0
(ii) aRb iff 1 + a b > 0
(iii) aRb if |a| ≤ b. Find whether relation is reflexive, symmetric or transitive.
The following relation is defined on the set of real numbers.
(i) aRb if a – b > 0
(ii) aRb iff 1 + a b > 0
(iii) aRb if |a| ≤ b. Find whether relation is reflexive, symmetric or transitive.

Solution:

(i) Consider aRb if a – b > 0

Now for this relation we have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be an arbitrary element of R.

Then, a ∈ R

But a − a = 0 ≯ 0

So, this relation is not reflexive.

Symmetry:

Let (a, b) ∈ R

⇒ a − b > 0

⇒ − (b − a) >0

⇒ b − a < 0

So, the given relation is not symmetric.

Transitivity:

Let (a, b) ∈R and (b, c) ∈R.

Then, a − b > 0 and b − c > 0

Adding the two, we get

a – b + b − c > 0

⇒ a – c > 0

⇒ (a, c) ∈ R.

So, the given relation is transitive.

(ii) Consider aRb iff 1 + a b > 0

Now for this relation we have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be an arbitrary element of R.

Then, a ∈ R

⇒ 1 + a × a > 0

i.e. 1 + a2 > 0             [Since, square of any number is positive]

So, the given relation is reflexive.

Symmetry:

Let (a, b) ∈ R

⇒ 1 + a b > 0

⇒ 1 + b a > 0

⇒ (b, a) ∈ R

So, the given relation is symmetric.

Transitivity:

Let (a, b) ∈R and (b, c) ∈R

⇒1 + a b > 0 and 1 + b c >0

But 1+ ac ≯ 0

⇒ (a, c) ∉ R

So, the given relation is not transitive.

(iii) Consider aRb if |a| ≤ b.

Now for this relation we have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be an arbitrary element of R.

Then, a ∈ R                  [Since, |a|=a]

⇒ |a|≮ a

So, R is not reflexive.

Symmetry:

Let (a, b) ∈ R

⇒ |a| ≤ b

⇒ |b| ≰ a for all a, b ∈ R

⇒ (b, a) ∉ R

So, R is not symmetric.

Transitivity:

Let (a, b) ∈ R and (b, c) ∈ R

⇒ |a| ≤ b and |b| ≤ c

Multiplying the corresponding sides, we get

|a| × |b| ≤ b c

⇒ |a| ≤ c

⇒ (a, c) ∈ R

Thus, R is transitive.