As per the given question,
Therefore
\[x\text{ }=\text{ }0,\]
now for the values close to \[x\text{ }=\text{ }0,\] and to the left of \[0,\text{ }f’\left( x \right)\text{ }>\text{ }0\]
Also for values
\[x\text{ }=\text{ }0,\]
and to the right of \[0,\text{ }f’\left( x \right)\text{ }>\text{ }0\]
Therefore, by first derivative test,\[x\text{ }=\text{ }0,\] is a point of local maxima and local minima value of \[f\text{ }\left( x \right)\text{ }is\text{ }{\scriptscriptstyle 1\!/\!{ }_2}.\]