A quadratic polynomial whose zeroes are 5 and -3, is (a) $x^{2}+2 x-15$ (b) $x^{2}-2 x+15$ (c) $x^{2}-2 x-15$ (d) none of these
A quadratic polynomial whose zeroes are 5 and -3, is (a) $x^{2}+2 x-15$ (b) $x^{2}-2 x+15$ (c) $x^{2}-2 x-15$ (d) none of these

(c) $x^{2}-2 x-15$

Since, the zeroes are 5 and $-3$.

$\alpha=5$ and $\beta=-3$

Therefore, sum of the zeroes, $\alpha+\beta=5+(-3)=2$

product of the zeroes, $\alpha \beta=5 \times(-3)=-15$

The polynomial will be $\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$

$\therefore$ The required polynomial is $x^{2}-2 x-15$.