Let X be a discrete random variable whose probability distribution is defined as follows: where k is a constant. Calculate (i) the value of k (ii) E (X) (iii) Standard deviation of X.
Let X be a discrete random variable whose probability distribution is defined as follows: where k is a constant. Calculate (i) the value of k (ii) E (X) (iii) Standard deviation of X.

(i) Given, \[P\left( X\text{ }=\text{ }x \right)\text{ }=\text{ }k\left( x\text{ }+\text{ }1 \right)\]for \[x\text{ }=\text{ }1,\text{ }2,\text{ }3,\text{ }4\]

So, \[P\left( X\text{ }=\text{ }1 \right)\text{ }=\text{ }k\left( 1\text{ }+\text{ }1 \right)\text{ }=\text{ }2k\]

\[P\left( X\text{ }=\text{ }2 \right)\text{ }=\text{ }k\left( 2\text{ }+\text{ }1 \right)\text{ }=\text{ }3k\]

\[P\left( X\text{ }=\text{ }3 \right)\text{ }=\text{ }k\left( 3\text{ }+\text{ }1 \right)\text{ }=\text{ }4k\]

\[P\left( X\text{ }=\text{ }4 \right)\text{ }=\text{ }k\left( 4\text{ }+\text{ }1 \right)\text{ }=\text{ }5k\]

Also, \[P\left( X\text{ }=\text{ }x \right)\text{ }=\text{ }2kx\] for \[x\text{ }=\text{ }5,\text{ }6,\text{ }7\]

\[P\left( X\text{ }=\text{ }5 \right)\text{ }=\text{ }2k\left( 5 \right)\text{ }=\text{ }10k\]

\[P\left( X\text{ }=\text{ }6 \right)\text{ }=\text{ }2k\left( 6 \right)\text{ }=\text{ }12k\]

\[P\left( X\text{ }=\text{ }7 \right)\text{ }=\text{ }2k\left( 7 \right)\text{ }=\text{ }14k\]

And, for otherwise it is \[0\].

Thus, the probability distribution is given by

We know that,

\[\sum\limits_{i=1}^{n}{P({{X}_{i}})}=1\]

So, \[2k\text{ }+\text{ }3k\text{ }+\text{ }4k\text{ }+\text{ }5k\text{ }+\text{ }10k\text{ }+\text{ }12k\text{ }+\text{ }14k\text{ }=\text{ }1\]

⇒ \[50k\text{ }=\text{ }1\]

\[\Rightarrow k\text{ }=\text{ }1/50\]

Therefore, the value of k is \[1/50\].

(ii) Now, the probability distribution is

\[E\left( X \right)\text{ }=\text{ }1\text{ }\times 2/50\text{ }+\text{ }2\text{ }\times 3/50\text{ }+\text{ }3\text{ }\times \text{ }4/50\text{ }+\text{ }4\text{ }\times 5/50\text{ }+\text{ }5\text{ }\times \text{ }10/50\text{ }+\text{ }6\text{ }\times \text{ }12/50\text{ }+\text{ }7\text{ }\times 14/50\]= \[2/50\text{ }+\text{ }6/50\text{ }+\text{ }12/50\text{ }+\text{ }20/50\text{ }+\text{ }50/50\text{ }+\text{ }72/50\text{ }+\text{ }98/50\]

= \[260/50\]

= \[26/5\text{ }=\text{ }5.2\]

(ii) We know that the standard deviation (SD) = √Variance

Variance = \[E({{X}^{2}})\text{ }\text{ }{{\left[ E\left( X \right) \right]}^{2}}\]