Let ,
P(n): given equation
Let us check for \[n\text{ }=\text{ }1,\]
\[P\text{ }\left( 1 \right):\text{ }1\left( 1+1 \right)\text{ }=\text{ }\left[ 1\left( 1+1 \right)\text{ }\left( 1+2 \right) \right]\text{ }/3\]
\[:\text{ }2\text{ }=\text{ }2\]
P (n) is true for \[n\text{ }=\text{ }1.\]
Now, let us check for P (n) is true for n = k, and have to prove that P (k + 1)
is true.
\[P\text{ }\left( k \right):\text{ }1.2\text{ }+\text{ }2.3\text{ }+\text{ }3.4\text{ }+\text{ }\ldots \text{ }+\text{ }k\left( k+1 \right)\text{ }=\text{ }\left[ k\text{ }\left( k+1 \right)\text{ }\left( k+2 \right) \right]\text{ }/\text{ }3\text{ }\ldots \text{ }\left( i \right)\]
So,
\[1.2\text{ }+\text{ }2.3\text{ }+\text{ }3.4\text{ }+\text{ }\ldots \text{ }+\text{ }k\left( k+1 \right)\text{ }+\text{ }\left( k+1 \right)\text{ }\left( k+2 \right)\]
Now, substituting the value of P (k) we get,
\[=\text{ }\left[ k\text{ }\left( k+1 \right)\text{ }\left( k+2 \right) \right]\text{ }/\text{ }3\text{ }+\text{ }\left( k+1 \right)\text{ }\left( k+2 \right)\] by using equation (i)
\[=\text{ }\left( k+2 \right)\text{ }\left( k+1 \right)\text{ }\left[ k/2\text{ }+\text{ }1 \right]\]
\[=\text{ }\left[ \left( k+1 \right)\text{ }\left( k+2 \right)\text{ }\left( k+3 \right) \right]\text{ }/3\]
P (n) is true for \[n\text{ }=\text{ }k\text{ }+\text{ }1\]
Hence, P (n) is true for all n ∈ N.