The curves are y = x3, y = x + 6 and x = 0
On solving y = x3 and y = x + 6, we have
\[\begin{array}{*{35}{l}}
{{x}^{3}}~=\text{ }x\text{ }+\text{ }6 \\
{{x}^{3}}~\text{ }-x\text{ }-\text{ }6\text{ }=\text{ }0 \\
{{x}^{2}}\left( x\text{ }-\text{ }2 \right)\text{ }+\text{ }2x\left( x\text{ }-\text{ }2 \right)\text{ }+\text{ }3\left( x\text{ }-\text{ }2 \right)\text{ }=\text{ }0 \\
\left( x\text{ }-\text{ }2 \right)\text{ }\left( {{x}^{2~}}+\text{ }2x\text{ }+\text{ }3 \right)\text{ }=\text{ }0 \\
\end{array}\]
It’s seen that x2 + 2x + 3 = 0 has no real roots
So, x = 2 is the only root for the above equation.
Now, the required area of the shaded region is given by