It is provided that
\[y\text{ }=\text{ }{{m}_{1}}x\text{ }+\text{ }{{c}_{1}}~\ldots ..\text{ }\left( 1 \right)\]
\[y\text{ }=\text{ }m2x\text{ }+\text{ }c2\text{ }\ldots \text{ }..\text{ }\left( 2 \right)\]
\[y\text{ }=\text{ }m3x\text{ }+\text{ }c3\text{ }\ldots \text{ }..\text{ }\left( 3 \right)\]
By deducting condition (1) from (2) we get
\[0\text{ }=\text{ }\left( m2\text{ }\text{ }m1 \right)\text{ }x\text{ }+\text{ }\left( c2\text{ }\text{ }c1 \right)\]
\[\left( m1\text{ }\text{ }m2 \right)\text{ }x\text{ }=\text{ }c2\text{ }\text{ }c1\]
So we get
Taking out the normal terms
\[m1\text{ }\left( c2\text{ }\text{ }c3 \right)\text{ }+\text{ }m2\text{ }\left( c3\text{ }\text{ }c1 \right)\text{ }+\text{ }m3\text{ }\left( c1\text{ }\text{ }c2 \right)\text{ }=\text{ }0\]
Thus, \[m1\text{ }\left( c2\text{ }\text{ }c3 \right)\text{ }+\text{ }m2\text{ }\left( c3\text{ }\text{ }c1 \right)\text{ }+\text{ }m3\text{ }\left( c1\text{ }\text{ }c2 \right)\text{ }=\text{ }0.\]