Given:
The line is \[\mathbf{3x}\text{ }\text{ }\mathbf{-4y}\text{ }+\text{ }\mathbf{2}\text{ }=\text{ }\mathbf{0}\]
In this way, \[\mathbf{y}\text{ }=\text{ }\mathbf{3x}/\mathbf{4}\text{ }+\text{ }\mathbf{2}/\mathbf{4}\]
\[=\text{ }\mathbf{3x}/\mathbf{4}\text{ }+\text{ }{\scriptscriptstyle 1\!/\!{ }_2}\]
Which is of the structure\[\mathbf{y}\text{ }=\text{ }\mathbf{mx}\text{ }+\text{ }\mathbf{c}\] , where m is the slant of the given line.
The incline of the given line is \[\mathbf{3}/\mathbf{4}\]
We realize that equal line have same slant.
∴ Slope of other line \[=\text{ }\mathbf{m}\text{ }=\text{ }\mathbf{3}/\mathbf{4}\]
Condition of line having slant m and going through (x1, y1) is given by
\[\mathbf{y}\text{ }\text{ }\mathbf{-y1}\text{ }=\text{ }\mathbf{m}\text{ }\left( \mathbf{x}\text{ }\text{ }\mathbf{x1} \right)\]
∴ Equation of line having slant 3/4 and going through (- 2, 3) is
\[\mathbf{y}\text{ }\text{ }\mathbf{-3}\text{ }=\text{ }{\scriptscriptstyle 3\!/\!{ }_4}\text{ }\left( \mathbf{x-}\text{ }\text{ }\left( -\text{ }\mathbf{2} \right) \right)\]
\[\mathbf{4y-}\text{ }\text{ }\mathbf{3}\text{ }\times \text{ }\mathbf{4}\text{ }=\text{ }\mathbf{3x}\text{ }+\text{ }\mathbf{3}\text{ }\times \text{ }\mathbf{2}\]
\[\mathbf{3x-}\text{ }\text{ }\mathbf{4y}\text{ }=\text{ }\mathbf{18}\]
∴ The condition is \[\mathbf{3x-}\text{ }\text{ }\mathbf{4y}\text{ }=\text{ }\mathbf{18}\]