find the equation of the line which satisfy the given condition: Find the equation of the line passing through (–3, 5) and perpendicular to the line through the points (2, 5) and (–3, 6).
find the equation of the line which satisfy the given condition: Find the equation of the line passing through (–3, 5) and perpendicular to the line through the points (2, 5) and (–3, 6).

 

 Given:

 

Focuses are \[\left( \mathbf{2},\text{ }\mathbf{5} \right)\]  and \[\left( -\text{ }\mathbf{3},\text{ }\mathbf{6} \right).\]

We realize that slant, \[\mathbf{m}\text{ }=\text{ }\left( \mathbf{y2}\text{ }\text{ }\mathbf{y1} \right)/\left( \mathbf{x2}\text{ }\text{ }\mathbf{x1} \right)\]

\[=\text{ }\left( \mathbf{6}\text{ }\text{ }\mathbf{5} \right)/\left( -\text{ }\mathbf{3}\text{ }\text{ }\mathbf{2} \right)\]

\[=\text{ }\mathbf{1}/\text{ }-\text{ }\mathbf{5}\text{ }=\text{ }-\text{ }\mathbf{1}/\mathbf{5}\]

We realize that two non-vertical lines are opposite to one another if and provided that their slants are negative reciprocals of one another.

 

Then, at that point, \[\mathbf{m}\text{ }=\text{ }\left( -\text{ }\mathbf{1}/\mathbf{m} \right)\]

\[=\text{ }-\text{ }\mathbf{1}/\left( -\text{ }\mathbf{1}/\mathbf{5} \right)\]

\[=\text{ }\mathbf{5}\]

We realize that the point (x, y) lies on the line with slant m through the proper point (x0, y0), if and provided that, its directions fulfill the condition \[\mathbf{y}\text{ }\text{ }\mathbf{y0}\text{ }=\text{ }\mathbf{m}\text{ }\left( \mathbf{x}\text{ }\text{ }\mathbf{x0} \right)\]

Then, at that point, \[\mathbf{y}\text{ }\text{ }\mathbf{5}\text{ }=\text{ }\mathbf{5}\left( \mathbf{x}\text{ }\text{ }\left( -\text{ }\mathbf{3} \right) \right)\]

\[\mathbf{y}\text{ }\text{ }\mathbf{5}\text{ }=\text{ }\mathbf{5x}\text{ }+\text{ }\mathbf{15}\]

\[\mathbf{5x}\text{ }+\text{ }\mathbf{15}\text{ }\text{ }\mathbf{y}\text{ }+\text{ }\mathbf{5}\text{ }=\text{ }\mathbf{0}\]

\[\mathbf{5x}\text{ }\text{ }\mathbf{y}\text{ }+\text{ }\mathbf{20}\text{ }=\text{ }\mathbf{0}\]

The condition of the line is \[\mathbf{5x}\text{ }\text{ }\mathbf{y}\text{ }+\text{ }\mathbf{20}\text{ }=\text{ }\mathbf{0}\]