Slope of the line joining the focuses \[\left( \mathbf{3},\text{ }-\text{ }\mathbf{1} \right)\text{ }\mathbf{and}\text{ }\left( \mathbf{4},\text{ }-\text{ }\mathbf{2} \right)\] is given by
\[\mathbf{m}\text{ }=\text{ }\left( \mathbf{y2}\text{ }\text{ }\mathbf{y1} \right)/\left( \mathbf{x2}\text{ }\text{ }\mathbf{x1} \right)\] where, \[\mathbf{x}\text{ }\ne \text{ }\mathbf{x1}\]
\[\mathbf{m}\text{ }=\text{ }\left( -\text{ }\mathbf{2}\text{ }\text{ }\left( -\text{ }\mathbf{1} \right) \right)/\left( \mathbf{4}-\mathbf{3} \right)\]
\[=\text{ }\left( -\text{ }\mathbf{2}+\mathbf{1} \right)/\left( \mathbf{4}-\mathbf{3} \right)\]
\[=\text{ }-\text{ }\mathbf{1}/\mathbf{1}\]
\[=\text{ }-\text{ }\mathbf{1}\]
point of tendency of line joining the focuses \[\left( \mathbf{3},\text{ }-\text{ }\mathbf{1} \right)\text{ }\mathbf{and}\text{ }\left( \mathbf{4},\text{ }-\text{ }\mathbf{2} \right)\] is given by
\[\mathbf{tan}\text{ }\mathbf{\theta }\text{ }=\text{ }-\text{ }\mathbf{1}\]
\[\mathbf{\theta }\text{ }=\text{ }\left( \mathbf{90}{}^\circ \text{ }+\text{ }\mathbf{45}{}^\circ \right)\text{ }=\text{ }\mathbf{135}{}^\circ \]
∴ The point between the x-pivot and the line joining the focuses \[\left( \mathbf{3},\text{ }\text{ }\mathbf{1} \right)\text{ }\mathbf{and}\text{ }\left( \mathbf{4},\text{ }\text{ }\mathbf{2} \right)\] is \[\mathbf{135}{}^\circ .\]