Without expanding the determinant, prove that $\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$
Without expanding the determinant, prove that $\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$

LHS:

$\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|$

Multiplying R 1 by a $\mathrm{R} 2$ by $\mathrm{b}$ and $\mathrm{R} 3$ by $\mathrm{c}$, we have

$\left|\begin{array}{lll}a^{2} & a^{3} & a b c \\ b^{2} & b^{3} & a b c \\ c^{2} & c^{3} & a b c\end{array}\right|$

Taking out common elements

$\frac{a b c}{a b c}\left|\begin{array}{lll}a^{2} & a^{3} & 1 \\ b^{2} & b^{3} & 1 \\ c^{2} & c^{3} & 1\end{array}\right|$

Interchanging $\mathrm{C}_{1}$ and $\mathrm{C}_{3}$

$=\left|\begin{array}{ccc}a^{2} & a^{3} & 1 \\ b^{2} & b^{3} & 1 \\ c^{2} & c^{3} & 1\end{array}\right|=-\left|\begin{array}{ccc}1 & a^{3} & a^{2} \\ 1 & b^{3} & b^{2} \\ 1 & c^{3} & c^{2}\end{array}\right|$

Interchanging $\mathrm{C}_{2}$ and $\mathrm{C}_{3}$

=$\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$