Arrangement (i):
Leave the two numbers alone x and y individually, to such an extent that y > x.
As indicated by the inquiry,
\[y\text{ }=\text{ }3x\text{ }\ldots \text{ }\ldots \text{ }\ldots \text{ }\left( 1 \right)\]
\[y\text{ }-x\text{ }=\text{ }26\text{ }\ldots \text{ }\ldots \text{ }..\left( 2 \right)\]
Subbing the worth of (1) into (2), we get
\[3x\text{ }-x\text{ }=\text{ }26\]
\[x\text{ }=\text{ }13\text{ }\ldots \text{ }\ldots \text{ }\ldots \text{ }.\text{ }\left( 3 \right)\]
Subbing (3) in (1), we get \[y\text{ }=\text{ }39\]
Consequently, the numbers are 13 and 39.
(ii) The bigger of two valuable points surpasses the more modest by 18 degrees. Discover them.
Arrangement (ii) :
Let the bigger point by \[{{x}^{o}}\] and more modest point be \[{{y}^{o}}\] .
We realize that the amount of two valuable pair of points is consistently \[{{180}^{o}}\] .
As per the inquiry,
\[x\text{ }+\text{ }y\text{ }=\text{ }{{180}^{o}}\ldots \ldots \ldots \ldots \ldots .\text{ }\left( 1 \right)\]
\[x\text{ }-y\text{ }=\text{ }{{18}^{o~}}\ldots \ldots \ldots \ldots \ldots ..\left( 2 \right)\]
From (1), we get \[x\text{ }=\text{ }{{180}^{o}}~-y\text{ }\ldots \ldots \ldots \ldots .\text{ }\left( 3 \right)\]
Subbing (3) in (2), we get
\[{{180}^{o~}}-y\text{ }-y\text{ }={{18}^{o}}\]
\[{{162}^{o}}~=\text{ }2y\]
\[y\text{ }=\text{ }{{81}^{o}}~\ldots \ldots \ldots \ldots ..\text{ }\left( 4 \right)\]
Utilizing the worth of y in (3), we get
\[x\text{ }=\text{ }{{180}^{o}}~-{{81}^{o}}\]
\[=\text{ }{{99}^{o}}\]
Thus, the points are \[\mathbf{9}{{\mathbf{9}}^{\mathbf{o}}}~\mathbf{and}\text{ }\mathbf{8}{{\mathbf{1}}^{\mathbf{o}}}\] .