An arithmetic progression or arithmetic sequence is a number’s sequence such that the difference between the consecutive terms is constant.
Solution:
Given, in an A.P
${{a}_{3}}=16$ and ${{a}_{7}}={{a}_{5}}+12$
We know that ${{a}_{n}}=a+\left( n-1 \right)d$
⇒ $a+2d=16$…… $\left( i \right)$
And,
$a+6d=a+4d+12$
$2d=12$
⇒ $d=6$
Using $d$ in $\left( i \right),$ we have
$a+2\left( 6 \right)=16$
$a=16-12=4$
Hence, the A.P is $4,10,16,22,$ …….