Solution:-
Let us assume the two numbers be, P and Q.
As per the condition given in the question,
\[{{P}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }208\] … [equation (i)]
\[{{Q}^{2}}~=\text{ }18P\] … [equation (ii)]
Consider the equation (i), \[{{P}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }208\]
\[{{Q}^{2}}~=\text{ }208-{{P}^{2}}\]
Now, substitute the value of \[{{Q}^{2}}\] in equation (ii) we get,
\[208-{{P}^{2}}~=\text{ }18P\]
By transposing we get,
\[{{P}^{2}}~+\text{ }18P\text{ }\text{ }208\text{ }=\text{ }0\]
\[{{P}^{2}}~+\text{ }26P-8P-208\text{ }=\text{ }0\]
Take out common in each terms,
$P(P + 26) – 8(P + 26) = 0$
$(P + 26) (P – 8) = 0$
Equate both to zero,
$P + 26 = 0$
$P – 8 = 0$
$P = – 26$
$P = 8$
Therefore, $P = 8$ … [because P can’t be negative]
So, \[{{Q}^{2}}~=\text{ }18P\]
\[{{Q}^{2}}~=\text{ }18\text{ }\times \text{ }8\]
\[{{Q}^{2}}~=\text{ }144\]
$Q = √144$
$Q = 12$