Solution:
Given,
${{a}_{7}}=32$ and ${{a}_{13}}=62$
From ${{a}_{n}}-{{a}_{k}}=\left( a+nd-d \right)-\left( a+kd-d \right)$
$=\left( n-k \right)d$
where n and k represents the nth and kth terms of an A.P
${{a}_{13}}-{{a}_{7}}=\left( 13-7 \right)d=62-32=30$
$6d=30$
$d=5$
Now,
${{a}_{7}}=a+\left( 7-1 \right)5=32$
$a+30=32$
$a=2$
Hence, the A.P is $2,7,12,17,$ ……