11. $3x+y+z=2$ $2x-4y+3z=-1$ $4x+y-3z=-11$
11. $3x+y+z=2$ $2x-4y+3z=-1$ $4x+y-3z=-11$

Solution: Assume there be a system of n simultaneous linear equations and with ‘n’ unknown given by

${{a}_{11}}{{X}_{1}}+{{a}_{12}}{{X}_{2}}+…+{{a}_{1n}}{{X}_{n}}={{b}_{1}}$

${{a}_{21}}{{X}_{1}}+{{a}_{22}}{{X}_{2}}+…+{{a}_{2n}}{{X}_{n}}={{b}_{2}}$

${{a}_{n1}}{{X}_{1}}+{{a}_{n2}}{{X}_{2}}+…+{{a}_{nn}}{{X}_{n}}={{b}_{n}}$

$LetD=\left| \begin{matrix}

{{a}_{11}} & {{a}_{12}} & \cdots  & {{a}_{1n}}  \\

{{a}_{21}} & {{a}_{22}} & \cdots  & {{a}_{2n}}  \\

\vdots  & \vdots  & {} & \vdots   \\

{{a}_{n1}} & {{a}_{n1}} & \cdots  & {{a}_{nn}}  \\

\end{matrix} \right|$Let ${{D}_{1}}$ be the determinant obtained from D after replacing the ${{j}^{th}}$column by

$\left| \begin{matrix}

{{b}_{1}}  \\

{{b}_{2}}  \\

\vdots   \\

{{b}_{n}}  \\

\end{matrix} \right|$Then,

${{X}_{1}}=\frac{{{D}_{1}}}{D},{{X}_{2}}=\frac{{{D}_{2}}}{D},…{{X}_{n}}=\frac{{{D}_{n}}}{D}$provided that $D\ne 0$

$3x+y+z=2$

$2x-4y+3z=-1$

$4x+y-3z=-11$

So by comparing with the theorem, let’s find $D,{{D}_{1}}And{{D}_{2}}$

$\Rightarrow D=\left| \begin{matrix}

3 & 1 & 1  \\

2 & -4 & 3  \\

4 & 1 & -3  \\

\end{matrix} \right|$

Solving for the determinant, expanding along 1st row

$\Rightarrow D=3\left[ (-4)(-3)-(3)(1) \right]-1\left[ (2)(-3)-12 \right]+1\left[ 2-4(-4) \right]$

$\Rightarrow D=3\left[ 12-3 \right]-\left[ -6-12 \right]+\left[ 2+16 \right]$

$\Rightarrow D=27+18+18$

$\Rightarrow D=63$

Again,

$\Rightarrow {{D}_{1}}=\left| \begin{matrix}

2 & 1 & 1  \\

-1 & -4 & 3  \\

-11 & 1 & -3  \\

\end{matrix} \right|$

Solving for the determinant, expanding along 1st row

$\Rightarrow {{D}_{1}}=2\left[ (-4)(-3)-(3)(1) \right]-1\left[ (-1)(-3)-(-11)(3) \right]+1\left[ (-1)-(-4)(-11) \right]$

$\Rightarrow {{D}_{1}}=2\left[ 12-3 \right]-1\left[ 3+33 \right]+1\left[ -1-44 \right]$

$\Rightarrow {{D}_{1}}=2\left[ 9 \right]-36-45$

$\Rightarrow {{D}_{1}}=18-36-45$

$\Rightarrow {{D}_{1}}=-63$

Now,

$\Rightarrow {{D}_{2}}=\left| \begin{matrix}

3 & 2 & 1  \\

2 & -1 & 3  \\

4 & -11 & -3  \\

\end{matrix} \right|$

Solving for the determinant, expanding along 1st row

$\Rightarrow {{D}_{2}}=3\left[ 3+33 \right]-2\left[ -6-12 \right]+1\left[ -22+4 \right]$

⇒ ${{D}_{2}}=3\left[ 36 \right]-2(-18)-18$

⇒ ${{D}_{2}}=126$

$\Rightarrow {{D}_{3}}=\left| \begin{matrix}

3 & 1 & 2  \\

2 & -4 & -1  \\

4 & -1 & -11  \\

\end{matrix} \right|$

Solving for the determinant, expanding along 1st row

$\Rightarrow {{D}_{3}}=3\left[ 44+1 \right]-1\left[ -22+4 \right]+2\left[ 2+16 \right]$

⇒ ${{D}_{3}}=3\left[ 45 \right]-1(-18)-2(18)$

$\Rightarrow {{D}_{3}}=135+18+36$

⇒ ${{D}_{3}}=189$

Therefore, by Cramer’s Rule, we will get

$\Rightarrow X=\frac{{{D}_{1}}}{D}$

$\Rightarrow X=\frac{-63}{63}$

$\Rightarrow X=-1$

$\Rightarrow Y=\frac{{{D}_{2}}}{D}$

$\Rightarrow Y=\frac{126}{63}$

$\Rightarrow Y=2$

$\Rightarrow Z=\frac{{{D}_{3}}}{D}$

$\Rightarrow Z=\frac{189}{63}$

$\Rightarrow Z=3$