Solution:-
Let us assume the two numbers be, P and Q.
As per the condition given in the question,
\[{{P}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }656\] …
[equation (i)]
P – Q = 4
P = 4 + Q … [equation (ii)]
Now, substitute the equation (ii) in equation (i) we get,
\[{{\left( 4\text{ }+\text{ }Q \right)}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }656\]
We know that, \[{{\left( a\text{ }+\text{ }b \right)}^{2}}~=\text{ }{{a}^{2}}~+\text{ }2ab\text{ }+\text{ }{{b}^{2}}\]
\[({{4}^{2}}_{~}+\text{ }\left( 2\text{ }\times \text{ }4\text{ }\times \text{ }Q \right)\text{ }+\text{ }{{Q}^{2}})\text{ }+\text{ }{{Q}^{2}}~=\text{ }656\]
\[16\text{ }+\text{ }8Q\text{ }+\text{ }{{Q}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }656\]
\[16\text{ }+\text{ }8Q\text{ }+\text{ }2{{Q}^{2}}~=\text{ }656\]
By transposing we get,
\[2{{Q}^{2}}~+\text{ }8Q\text{ }+\text{ }16\text{ }\text{ }656\text{ }=\text{ }0\]
\[2{{Q}^{2}}~+\text{ }8Q\text{ }\text{ }640\text{ }=\text{ }0\]
Divide both side by \[2\] we get,
\[2{{Q}^{2}}/2\text{ }+8Q/2\text{ }\text{ }640/2\text{ }=\text{ }0/2\]
\[{{Q}^{2}}~+\text{ }4Q\text{ }\text{ }320\text{ }=\text{ }0\]
\[{{Q}^{2}}~+\text{ }20Q\text{ }\text{ }16Q\text{ }\text{ }320\text{ }=\text{ }0\]
Take out common in each terms,
$Q(Q + 20) – 16(Q + 20) = 0$
$(Q + 20) (Q – 16) = 0$
Equate both to zero,
$Q + 20 = 0$
$Q – 16 = 0$
$Q = – 20$
$Q = 16$
$Q = 16$ … [because Q can’t be negative]
So, $P = 4 + Q$
$P = 4 + 16$
$P = 20$
Therefore, the numbers are $16 and 20$.