10. Two natural numbers differ by 4. If the sum of their square is 656, find the numbers.
10. Two natural numbers differ by 4. If the sum of their square is 656, find the numbers.

Solution:-

Let us assume the two numbers be, P and Q.

As per the condition given in the question,

\[{{P}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }656\] …

[equation (i)]

P – Q = 4

P = 4 + Q … [equation (ii)]

Now, substitute the equation (ii) in equation (i) we get,

\[{{\left( 4\text{ }+\text{ }Q \right)}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }656\]

We know that, \[{{\left( a\text{ }+\text{ }b \right)}^{2}}~=\text{ }{{a}^{2}}~+\text{ }2ab\text{ }+\text{ }{{b}^{2}}\]

\[({{4}^{2}}_{~}+\text{ }\left( 2\text{ }\times \text{ }4\text{ }\times \text{ }Q \right)\text{ }+\text{ }{{Q}^{2}})\text{ }+\text{ }{{Q}^{2}}~=\text{ }656\]

\[16\text{ }+\text{ }8Q\text{ }+\text{ }{{Q}^{2}}~+\text{ }{{Q}^{2}}~=\text{ }656\]

\[16\text{ }+\text{ }8Q\text{ }+\text{ }2{{Q}^{2}}~=\text{ }656\]

By transposing we get,

\[2{{Q}^{2}}~+\text{ }8Q\text{ }+\text{ }16\text{ }\text{ }656\text{ }=\text{ }0\]

\[2{{Q}^{2}}~+\text{ }8Q\text{ }\text{ }640\text{ }=\text{ }0\]

Divide both side by  \[2\]  we get,

\[2{{Q}^{2}}/2\text{ }+8Q/2\text{ }\text{ }640/2\text{ }=\text{ }0/2\]

\[{{Q}^{2}}~+\text{ }4Q\text{ }\text{ }320\text{ }=\text{ }0\]

\[{{Q}^{2}}~+\text{ }20Q\text{ }\text{ }16Q\text{ }\text{ }320\text{ }=\text{ }0\]

Take out common in each terms,

$Q(Q + 20) – 16(Q + 20) = 0$

$(Q + 20) (Q – 16) = 0$

Equate both to zero,

$Q + 20 = 0$

$Q – 16 = 0$

$Q = – 20$

$Q = 16$

$Q = 16$ … [because Q can’t be negative]

So, $P = 4 + Q$

$P = 4 + 16$

$P = 20$

Therefore, the numbers are $16 and 20$.