What is the: (a) Momentum, (b) Speed of an electron with a kinetic energy of 120 \mathrm{eV} .
What is the: (a) Momentum, (b) Speed of an electron with a kinetic energy of 120 \mathrm{eV} .

Kinetic energy of the electron is given as \mathbf{E}_{\mathrm{K}}=\mathbf{1 2 0} \mathrm{eV}

Planck’s constant, \mathbf{h}=\mathbf{6 . 6} \times \mathbf{1 0}^{-34} \mathrm{~J} \mathrm{~s}

Mass of an electron, \mathbf{m}=\mathbf{9 . 1} \times \mathbf{1 0}^{-31} \mathrm{Kg}

Charge on an electron, \mathbf{e}=\mathbf{1 . 6} \times \mathbf{1 0}^{-19} \mathbf{C}

(a) For an electron, the relation for kinetic energy can be wrtitten as,

\mathrm{E}_{\mathrm{k}}=\frac{1}{2} m v^{2}

Where, v= speed of the electron

Therefore, v^{2}=\sqrt{\frac{2 e E_{k}}{m}}

=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 120}{9.1 \times 10^{-31}}}

=\sqrt{42.198 \times 10^{12}}

=6.496 \times 10^{6} \mathrm{~m} / \mathrm{s}

Momentum of the electron is,
p=m v=9.1 \times 10^{-31} \times 6.496 \times 10^{6}

=5.91 \times 10^{-24} \mathrm{~kg} \mathrm{~m} / \mathrm{s}

Therefore, 5.91 \times 10^{-24} \mathrm{Kg} \mathrm{m} / \mathrm{s} is the momentum of the electron.

(b) speed of the electron, v=6.496 \times 10^{6} \mathrm{~m} / \mathrm{s}